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An attempt is made to describe the basic principles of physics in terms of  discrete 
partially ordered sets. Geometric ideas are introduced by means of an action at 
a distance formulation of classical electrodynamics. The speculations are in two 
main directions: (i) Gravity, one of the four elementary forces of  nature, seems 
to be fundamentally different from the other three forces. Could it be that gravity 
can be explained as a natural consequence of the discrete sfructure? (ii) The 
problem of  the observer in quantum mechanics continues to cause conceptual 
problems. Can quantum statistics be explained in terms of finite ensembles of 
possible partially ordered sets? The development is guided at all stages by 
reference to the simplest, and most well-established principles of  physics. 

I. I N T R O D U C T I O N  

The model that physicists use to describe the physical world is based 
on a differential manifold. It is thought that the curvature of  the manifold 
itself provides an explanation of gravity. Within the manifold, further 
structures are def ined--vector  fields, particle paths, and so fo r th - -and  these 
are taken to account for the behavior of  physical material. This picture, or 
Weltbild, is so generally accepted, and it is based on such a long history of 
physical research, that it might seem almost unthinkable to question it. And 
yet the purpose of this paper  is to advance the proposit ion that other 
mathematical  models may also be chosen. 

While such a step may be condemned by many cautious readers, 
nevertheless it is interesting to recall the "General  Remark D"  of Einstein 
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(1956). He wrote, "One can give good reasons why reality cannot at all be 
represented by a continuous field. From the quantum phenomena it appears 
to follow with certainty that a finite system of finite energy can be completely 
described by a finite set of  numbers (quantum numbers). This does not 
seem to be in accordance with a continuum theory, and must lead to an 
attempt to find a purely algebraic theory for the description of  reality. But 
nobody knows how to obtain the basis of  such a theory."  

Unfortunately, both mathematics and physics have recently become 
increasingly subdivided into narrow areas of specialization. The area of 
mathematics that claims to have physical relevance is called "mathematical- 
physics." It is usually considered to be a special subject within the field of 
mathematical analysis--that is to say, the study of  differential structures in 
general. New and speculative papers in mathematical physics are often 
concerned with very abstract analytic systems. Also, much recent work in 
probability theory can be thought of as falling into this category. On the 
other hand, the areas of  mathematics that may be relevant to Einstein's 
problem--graph theory, lattice theory, and so on- -a re  not usually con- 
sidered to be a part of "mathematical physics." Thus, practical research in 
those subjects is concerned, for example, with questions that might have 
relevance in information theory. As a result there appears to have been 
virtually no research done on Einstein's problem. 

And yet it cannot be said that the model of  the physical world in terms 
of differential manifolds provides a perfectly clear and satisfactory descrip- 
tion of all physical phenomena. On the contrary, the idea is often expressed 
that there is something wrong with our basic understanding of physics, and 
that therefore "new ideas" are called for. But what new ideas can there be? 
Surely, too many famous and competent physicists have devoted their 
energies to this question, but without result. How is it possible to overturn 
the work of  centuries of  philosophical thought? 

It seems to me that another approach is called for. The goal is, accord ing  
to Einstein, to find a representation of  nature that avoids the use of  a 
continuous field. The alternative to a continuum is a discrete set: a set that 
is such that the elements do not have arbitrarily near neighbors. But then, 
logically enough, the laws of  physics, dealing with forces, interactions, and 
in general relationships between the elements of  the set, must be transmitted 
over finite (not infinitesimal) distances. Thus, the path to a successful discrete 
theory of  physics must in some way make use of an "action-at-a-distance" 
theory. 

This conclusion is at once obvious and trivial, but it is still necessary 
to explain it further. The concept of action at a distance seems to be 
misunderstood and little known: it is often erroneously asserted that the 
theory of  relativity is incompatible with any action-at-a-distance theory. 
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But this is far from being the case. On the contrary, the theory Of action at 
a distance that I shall discuss can only be sensibly formulated in relativistic 
terms. This is the historical reason that physicists resorted to the concept 
of ether, or, in its modern guise, "space-time," in the 19th century. 

The theory of action at a distance has been considered and developed 
by many famous people, including Gauss, Schwarzschild, Tetrode, Fokker, 
Feynman, and, more recently, Hoyle and Narlikar. A truly simple and 
all-encompassing relativistic formulation was discovered by Fokker (1929), 
and Section 2 of the present paper is devoted to a description of the theory. 
For simplicity I shall call it "Fokker 's theory." In my opinion this formula- 
tion provides a key to the understanding of classical physics in a differential- 
free mathematical framework. 

Section 3 is concerned with the development of a discrete mathematical 
structure based on Fokker's theory. Some of the consequences and defects 
of this structure are investigated there by means of examples. The goal is 
to show that the discrete framework I formulate is in some sense equivalent 
to the usual continuous framework provided by R 4. But is it possible sensibly 
to compare two so different models? This question is also dealt with. 

I define and work within a very specific discrete model. This gives the 
advantage of having a specific framework upon which to base my arguments. 
But this way of describing my ideas brings with it a very real danger; some 
readers may gain the impression that I am only prepared to advocate this 
one model, to the exclusion of all other possible discrete models. Nothing 
could be further from the truth. In fact, I am aware of many points where 
this model could be altered or changed to advantage. I can only hope that 
others will become interested in the idea of a discrete (rather than con- 
tinuous, or differential) geometry for physics, and that they will also propose 
possible new solutions to some of the problems that lead to conceptual 
difficulties in modern physics. 

While Section 2 is essentially nothing more than an account of a number 
of long-established classical results and Section 3, while new, follows 
conventional ways of thinking, Sections 4 and 5 are of a much more 
speculative nature. Section 4 considers a number of simple and "classical" 
results in the general theory of relativity, and attempts to argue that the 
present discrete framework may produce structures that lead to similar 
results. Section 5 considers a number of elementary phenomena in the 
theory of  quantum mechanics and the question of whether or not it is 
possible to interpret these phenomena in terms of discrete structures. 

Perhaps the main question is: what is the reason for being dissatisfied 
with the conventional description of physics in terms of differential mani- 
folds? There are of course technical problems with some recently proposed 
field theories, which have led people to construct simple "lattice models." 
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But my principal motivation has been confined to a very much more basic 
level indeed: every elementary textbook on quantum mechanics begins, 
sometimes even in the introduction, with a discussion of the "basic mystery" 
of  quantum mechanics. Feynman et al. (1965) expresses this particularly 
well. But certainly any mathematician must be dissatisfied with this state 
of  affairs. Thus, this paper  can be considered to begin and to end in this 
"loose end" in the introduction to any book on quantum mechanics. Section 
5 can only be understood in these terms. 

Finally, Section 6 discusses some aspects of  Hoyle and Narlikar 's work 
on quantum electrodynamics. Section 7 concludes with a number  of  further 
speculations and open questions. 

It is certainly not the case that the ideas presented here add up to a 
coherent and definitive alternative to the present geometric foundations of  
physics. Perhaps such a goal can never be achieved when one considers the 
diverse--sometimes even divergent--directions of  modern physics. But it 
is at least my thesis that the standard lattice model,  which is often considered 
to be convenient to use, is not particularly appropriate,  and therefore the 
present work can be considered as providing some arguments for the use 
of  more interesting discrete geometric models in theoretical physics. 

2. ACTION AT A DISTANCE IN CLASSICAL 
ELECTRODYNAM IC S  

2.1. Maxwelrs  Equations 

The theory of  classical electrodynamics was developed during the 19th 
century in parallel with an increasingly refined basis of  experimental 
observation. The goal was to provide a coherent and accurate explanation 
of the physical world, and yet on both counts the theory has always been 
deficient. The fact that it is inaccurate has led to its being discarded in favor 
of  the quantum theory. It might well be argued that we will never achieve 
a final and definitive theory of  physics, but on the other hand the quantum 
theory is itself based on the concepts of  classical electrodynamics, and so 
the classical theory retains a position of importance. The fact that it poses 
many difficult--and still unsolved--mathemat ica l  questions is perhaps a 
property that it must share with any reasonable theory of the physical world. 

Of  course Maxwell (1831-1879) played a central and decisive role in 
the formulation of the theory of  classical electrodynamics. Nevertheless it 
might be interesting to recall that during the 1830s Gauss (1777-1855) also 
devoted a great deal of  time to the problem of electricity and magnetism. 
The information available to him was hardly less than what Maxwell had. 
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And in fact Gauss was (together with W. Weber) the editor of a contemporary 
journal on magnetism. Yet Gauss failed to produce a viable theory. 

In a letter to Weber (Gauss, 1845) he wrote, "I  would doubtless have 
published my researches long ago were it not that, at the time I gave them 
up, I had failed to find what I regarded as the keystone, Nil actum reputans 
si quid superesset agendum: namely the derivation of the additional forces--  
to be added to the interaction of electrical charges at rest, when they are 
both in mot ion-- f rom an action which is propagated not instantaneously 
but in time, as is the case with light." 

As we shall see, this basic strategy of Gauss is correct, but unfortunately 
in the 1830s he did not have the means of bringing the idea to fruition. It 
turns out that such interactions, both in space and in time, can only be 
sensibly formulated within the framework of the theory of relativity. Thus, 
according to Wheeler and Feynman (1949), "Field theory taught gradually 
and over seven decades' difficult lessons about constancy of light velocity, 
about relativity of space and time, about advanced and retarded forces, 
and in the end made possible by this circuitous route the theory of direct 
interparticle interaction which Gauss had hoped to achieve in one leap." 

Maxwell's equations are 

V x E -  Vx  H =  4~-J+ 
C O t '  C 

(1) 
V �9 E = 4~rpe, V" H = 0  

where E is the electric field, H is the magnetic field, t is time, c is the speed 
of light, pe is a scalar fie!d representing the charge density, and J is a vector 
field representing the three-dimensional electrical currents. One may also 
write J -- per, where v is a vector field representing the velocity of the charge, 
whose electrical density is pc. The various fields E, H, Pc, and J are defined 
in three-dimensional Euclidean space R 3. The theory describes a one- 
parameter family of such fields, indexed by the real parameter t. In addition, 
it is necessary to specify the effect of the electromagnetic fields on charged 
matter, and this is done by means of the Lorentz equation. 

where f is the force density (that is, the force per unit volume). 
Now it is obvious that all of  these equations, when taken together, 

produce a theory of such great mathematical complexity that only a few 
simple classes of solutions are known. But this complexity alone is not the 
main problem. Even given that one is able to produce new solutions, it is 
still unclear what relevance they might have to the description of the real 
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physical world. Thus, especially during the early 20th century, the theory 
was altered and qualified. For example, the idea that matter can be thought 
of  as a continuous fluid gradually lost influence, and instead people came 
to think o f  pointlike particles moving through a vacuous space. It  became 
necessary to change (at least) the conception of the quantities Pc, J, and f 
from the original idea of  smooth fields. Then the theory of relativity changed 
the basic framework within which the equations had a meaning. 

In fact, the theory of relativity allows a simplification of the equations. 
One may write 

o Hz -By 
-E, F = - H z  0 Hx (3) 

H e - H x  0 
Ex Ey E~ 

and F is considered to represent an antisymmetric tensor field in four- 
dimensional Euclidean space R 4. The vector J is defined on R 4 to be 

(.11, .12, J3, .14) = (Jx, Jy, Jz, Pe) (4) 

Then Maxwell's equations become 

Fij.j = 4rrJ,, F~j,k + F~k,, + Fk,o = 0 (5) 

where /, j, and k run from 1 to 4 ,. and the summation convention 

F~J.i = ~ eF~j (6) 
j=l OXj 

is being used. The partial derivative here is to be understood in the sense 
of covariant derivatives in the theory of differential manifolds. We have 
chosen the unit of " t ime" along the x4 axis in such a way that the speed 
of  light is 1. The space R 4 is considered to be the usual pseudo-Riemannian 
manifold of the special theory of  relativity. Also, the Lorentz equation can 
be rewritten within this framework, but I prefer to defer this to the sequel. 

This formulation of  Maxwell's equations leads to a still simpler formu- 
lation when one observes that it is possible to find a so-called "vector 
potential" A, which is a vector field on R 4 satisfying 

OAj OA, 
F~j = - -  (7) 

ax~ Oxj 

It may be assumed that the gauge condition Ai,~ = 0 holds, and thus that 
the wave equations 

Aioj = 4~Ji  (8) 

for i = 1 , . . . ,  4 also hold. 
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Many textbooks describe these equations, the assumptions and observa- 
tions that lie behind them, and also a few solutions in simple situations. It 
is not the purpose of this paper  to attempt to provide a comprehensive 
treatment of  such well-known results. But it will be worthwhile and instruc- 
tive for our later purposes to examine two particular solutions now. 

2.2. Some Simple Solutions to Maxwell's Equations 

Solution 1. Plane Waves. This first solution to Maxwell 's equations is 
concerned with the situation when space and time are devoid of electrical 
charge. Thus, J and pe are zero and w~ have Aioj = 0 for i = 1 , . . . ,  4. Now 
there are certainly very many different, but similar, solutions in this case. 
One class of  solutions can be identified by simply taking A1 = A3 = A4 = 0. 
We can restrict the situation still more by assuming that the remaining 
component,  namely A2, depends only on the variables Xl and x4, which, 
to return to the more traditional notation, I will call x and ct. Thus we 
obtain the equation 

02A2 02A2 = 0  (9) 
OX 2 eZot 2 

We may choose any smooth, real function, say u : R ~ R .  Then certainly 
A2= u ( x - c t )  provides a solution. In addition, the equation Ai, i = 0  is 
trivially satisfied. One traditional possibility is to take u as being a 
trigonometric function, for example u ( x - c t ) = s i n ( x - c t ) .  This leads to 
F21 : Hz = -OA2/ox = - c o s ( x -  ct); similarly F 2 4  = Ey = - c o s ( x  - ct), w e  

have F12 = -F2~, F42 = F24, and all other F 0 are 0. This solution represents 
a plane polarized wave traveling in the x direction with velocity c. 

Now there is certainly nothing unusual in all of  this. As far as the 
practical application of physics is concerned, such electromagnetic plane 
wave solutions are of  great impor tance-- f rom,  say, the design of a simple 
capacitor to the use of very long-baseline interferometry in radio astronomy. 
But notwithstanding such practical considerations, it must be admitted that 
if our goal is to be the understanding of the basic principles of  physics, 
then all such solutions must be discarded from the outset. For example, it 
is known that the universe is in some sense expanding, and this fact is in 
conflict with our plane wave solution. But it is also clear that the universe 
does, in fact, contain electrically charged material. 

The linearity of  Maxwell 's equations allow one simply to add in any 
of these vacuum solutions to a given solution, thus obtaining a new solution. 
However, such a procedure leads to difficulties as soon as the effect of  the 
Lorentz equation is brought into consideration. 

Solution 2. A Uniformly Charged Spherical Ball. The second solution 
I will consider concerns once again a universe without electrical charge, 
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except for a stationary spherical ball of  uniform charge density p and radius 
e, located at the point (0, 0, 0) ~ R 3. One solution for this problem (others 
may be obtained by adding in additional vacuum solutions as in case 1 
above) involves both the electrical field E and the magnetic field H being 
constant in time. But of course this implies that H vanishes. Outside the 
ball, we have E being radially symmetric about the origin (0, 0, 0) and 
proportional in strength to the inverse of  the distance to the origin. 

Specifically, choose AI=A2=A3=O and Aa=k l / r  [where r =  
(X2+y2+z2)l/2] for r > e  and A4=k2r 2 for r<-e, where kl and k2 are 
appropriate constants. Once again the equation Ai, i = 0 is trivially satisfied 
for all r, and the Laplacian, considered in spherical coordinates, 

0 (r20A4~ 
r 2or \ -~-r/  (10) 

vanishes for r > e. When r -< e we have no electrical currents, so that Ji = 0 
for i =  1, 2, 3. But J4 =p, so that we must have A4jj=4~rp, and thus 
k2= 4~rp/6. In order to have A4 continuous, it is then necessary to have 
k~ = 4"a'pe3 / 6. 

This solution involves a continuous, fluidlike ball of electrical material. 
Such a fluid may have represented the picture that physicists in the 19th 
century found to be appropriate, and in fact Lorentz used such a model of  
the electron in his attempt to show that the mass was of electromagnetic 
origin. But this is very much removed from the accepted ideas of today. In 
fact, it seems now to be generally accepted that (as far as quantum mechanics 
allows the discussion of  such concepts) the electron is purely pointlike. 

One way of dealing with such pointlike electrons (see, for example, 
Dirac, 1938) is to consider our uniform ball solution with a constant total 
charge, but with the radius e tending to zero, and thus the charge density 
p tending to infinity. Thus we end up with the solution A4 = k / r  for some 
constant k. Of course this solution is not continuous, or even well defined, 
at the origin. But still it is possible, following Dirac, to extend the theory 
to include the possibility of  such generalized functions. There are, however, 
a number of  problems with this picture. 

For example, there is the problem of the self-interaction of such an 
electron with its own electrical field. The field is infinite at the particle, and 
so something other than the simple Lorentz equation may be necessary to 
describe its motion. (The reader should be wary of dismissing this problem 
with the thought that it is of  little concern in the quantum theory. On the 
contrary, as already noted, the quantum theory is defined in terms of classical 
electrodynamics, and in any case, the quantum theory has itself a collection 
of similar "divergences.") Dirac shows, using a kind of  perturbation theory 
argument, that such a classical electron may, by itself, begin to accelerate, 
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achieving an exponentially increasing velocity through the force of  its own 
classical electromagnetic field. He shows how to eliminate such physically 
unrealistic solutions, but the price that must be paid is the phenomenon of 
"preacceleration." That is, an electron that is about to be disturbed by an 
external field must "anticipate" the field with a prior movement  of  its own. 
This would appear  to violate the principle of  causality. But even without 
discussing such esoteric paradoxes,  it is easy to see that in every neighbor- 
hood of such an electron there would be an infinite total field energy, and 
that would also appear  to conflict with a number  of  established principles 
of  physics. 

2.3. Point l ike  Particles 

In this section I show how it is possible to deal in a systematic way 
with the electromagnetic fields generated by collections of  pointlike, electri- 
cally charged particles. 

Definition. Let T : R ~ R  4 be a smooth path. I will say that y is t imelike 
if y is order-preserving. The order on R is, of  course the usual total ordering. 
On R 4 the Lorentz ordering will be used. Thus, if X, Y ~ R 4 are two points 
with coordinates X = (xl,  x2, x3, x4) and Y = (y~, Y2, Y3, Y4), then X < Y if 
both x4 < Y4 and 

(X I  - -  y l ) 2  .~  ( X  2 - -  y 2 ) 2  + ( X  3 --  y 3 ) 2  < ( X  4 - -  y4)2 (11) 

From now on, particles will be considered to be timelike paths that are 
infinitely long in both directions. Let F be some locally finite collection of 
nonintersecting particles. That is, given any compact  region K in R 4, then 
at most finitely many particles of  F meet K. In this situation, it is possible 
to define the electrical currents in terms of generalized functions. For each 
particle y ~ F we assign a real number  e v corresponding to the electrical 
charge of 3/. Furthermore, at a given point 7(~') of  y let v(~-) = y'(~') be the 
velocity of  y, a 4-vector. Note that the path 3/is parameterized here simply 
with the time coordinate r = x4. Another possibility is to take the proper-t ime 
parameterizat ion.  This is such that at all points the particle y(s)  has IOy/Osl = 
I with respect to the Lorentz metric on R 4. That is, 

I clr F(ar~l ~ ~(ar4121 '/2 (12) 

We can now define the electrical current: of  the particle 3' to be the vector 
field on R 4 given by J ( x )  =- e ~ v ( r  - y(~-)), where x = (xl,  x2, x3, x4) and 
T = X 4 . 

Such electrical currents, expressed in terms of generalized functions, 
can be inserted into the equation Aiaj = 4~rJi. Standard solutions are given 
by the so-called Li6nard-Wiechert potentials [consult any textbook on 
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classical electrodynamics (e.g., Eyges, 1972) for a derivation of these 
solutions] 

A• z )=  e, J v(r) ~(x, ~'• Ix- ~(~)1) d(~) (13) 
Ix- r(~)l 

Here x is the projection of a point x ~ R 4 onto R 3, and thus we will also 
consider 3,(r) here to denote the projection of the point of ~ (namely the 
image on z) onto R 3. 

In the special case that 3,(r) = (0, 0, 0), Vz s R, it is clear that both of 
the solutions A• reduce to the solution found in the last section. In the 
more general case A§ and A_ are different, and they are called the advanced 
and retarded potentials, respectively: 

As we have seen, it is possible to express the Li6nard-Wiechert poten- 
tials (and thus the electromagnetic fields) in a simple way if the generating 
particle is stationary. The case of uniform motion without acceleration can 
also be deduced from this solution by observing that one need only change 
the frame of reference (in the sense of relativity) in order to reduce such 
motion to the stationary case. But more general Li6nard-Wiechert solutions, 
associated with accelerated particles, cannot in general be expressed in 
terms of simple functions. 

It is interesting to observe that the retarded solutions can be thought 
of as representing electromagnetic radiations traveling forward in time, 
while the advanced solutions represent radiations traveling backward. From 
the point of view of classical electrodynamics, both solutions are valid, or 
any combination of the two. The idea of forward- and backward-directed 
radiations stems from the idea of cause and effect. The cause of the radiation 
is the presence and motion of the particle 3' at some point 3,(~-). The effect 
is then felt along the "lightcones" [that is, the points of R 4 with vanishing 
Lorentz distance from 3,(~')] above and below 3,(r). The "normal" situation 
is that the cause precedes the effect in time. That is, the effect is only felt 
along the light cone above the point 3,(T), and this is represented by the 
retarded Li6nard-Wiechert potential. Thus, it would seem to be a natural 
idea to exclude the advanced potentials from further consideration. 
However, as we shall see, it is by no means clear that the relationship of 
cause and effect in physical processes implies the vanishing of the advanced 
potentials. On the contrary, the validity of the action-at-a-distance theory 
that I will consider depends on the existence of advanced potentials that 
do not violate the principle of cause and effect. 

2.4. Action at a Distance in Physics 

The concept of "action at a distance" is usually associated with 
Newtonian gravitation. The force of gravity within this theory is 
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transmitted instantaneously between widely separated objects. Now it is 
easy to show that if the premises of the theory of relativity are accepted, 
then such an instantaneous action at a distance will lead to a violation of 
the principle of  cause and effect, as discussed in the last section. 

But there are other theories of action at a distance that  are not in 
conflict with the theory of relativity. One such theory involves the study of 
Hamiltonian systems with constraints (see, for example, Llosa, 1981). On 
the other hand, the theory that I shall discuss (sometimes called the "many- 
time" theory) is based on the consequences of the Li6nard-Wiechert poten- 
tials. It is fair to say that this theory represents the solution to the problem 
that Gauss posed in the 1830s, and thus it is just as much a traditional 
approach to the problem of electrodynamics as is Maxwell's theory. 

What reasons are there for examining such unusual theories? To begin 
with, I have already noted some of the standard difficulties with the Maxwell 
theory. One could hope to overcome these difficulties by attempting to find 
a new framework for electrodynamics. But perhaps the most important 
reason has to do with Mach's principle. 

Consider, for example, a rotating bucket of water (Figure 1). The 
surface of the water assumes a concave shape, even though the water itself 
may be stationary with respect to the bucket. How can we explain this 
curvature ? 

Fig. 1 
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It is necessary to say that the bucket is not in an inertial frame of 
reference, and that for an observer who happens to be in such a f rame--who 
is, so to speak, standing "outside" the bucket-- i t  is obvious that the water 
experiences a centrifugal force. But then what is more special about the 
inertial frame in comparison with the rotating frame? In the end one is 
reduced to an appeal to Mach's principle: that the distant matter of the 
universe somehow influences the seemingly local phenomena of physics. 

One might think that this appeal to Mach's principle is a natural one 
in the framework of Maxwell's theory: it is only necessary to define certain 
conditions "at infinity" within a given space, and then to apply the unique- 
ness theorems for the solutions of  partial differential equations. But what 
are these conditions at infinity? And indeed, while it is true that the space 
R 4 together with the Lorentz metric provides an approximate local model 
for physics, it is also true that it fails badly as a cosmological model for 
such global solutions. Certainly Einstein, who took Mach's principle very 
seriously, was surprised by G6del's (1949) demonstration of  the existence 
of  a rotating universe that conforms with the general theory of  relativity. 
Thus, it is apparent that one should approach with caution any too easy 
discussion of  local field theories in terms of  vague boundary conditions. 

To be quite specific, the reader should consider some particular physical 
movement, for example, lifting a book from a table. Certain forces are 
involved: there is the inertia of the book, the pages might move relative to 
the binding. The question is, should one consider these phenomena as being 
purely local, so that eventually some small electromagnetic disturbances 
might propagate themselves though space and time to the distant stars, and 
thus Mach's principle will in some way be satisfied? Or should one think 
of such things as being directly and immediately caused by an interaction 
with all of  the matter in the universe, even the most distant? 

This question is a very philosophical one, but not without some practical 
value, as Einstein's experience suggests. The question is also a mathematical 
one. Can the relativistically invariant classical electrodynamics be formu- 
lated in terms of direct interactions between widely separated particles, and 
if so, are the two theories equivalent? 

2.5. Fokker's Action Principle 

The formulation of the theory of action at a distance that I shall discuss 
is due to Fokker (1929) and so I shall refer to it as Fokker's theory. It is 
based on the idea of pointlike particles moving through space-time. In its 
initial formulation, the theory is only concerned with these particles, and 
it ignores completely the question of electromagnetic fields. The theory is 
expressed as a variational principle. Fokker considers a locally finite collec- 
tion F of particles represented by smooth timelike paths in R 4. Given such 
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a particle y ~ F, two real numbers e r and m r are associated with y, represent- 
ing the electrical charge and the mass of  7, respectively. The next step is 
to define the quantity 

- (Gee)a(sr(u),e(v))~, ,~ du dv (14) Jr: 2 m ,  y d u + 2  2 , ,  

T c F  -- y < ~ j  -- 

Of course, one immediately notices that J r  does not appear  to be properly 
defined! Even if we confine ourselves to the relatively simple first term, it 
is clear that the integral diverges; then we are asked to sum over a possibly 
infinite set, indexed by F, of  such integrals. The second term, if we look so 
far, only serves to make matters worse! (It should be noted here that Fokker, 
writing in 1929, did not use the notation of generalized functions. In fact 
his more traditional notation is in many ways more readable than the modern 
treatments.) 

Fokker 's  principle is that the collection of paths F should have the 
property that 

Jr = extremum (15) 

In what sense is Jr to be evaluated, and with respect to what is Jr an 
extremum? These questions will gradually be dealt with in the rest of this 
section. But for the moment  one should bear in mind that we are dealing 
with a variational principle, and the things to be varied are the elements 
of  F. Imagine that a compact  set K c R 4 is given, and a variation of F that 
is confined to the interior of  K. Then one can reasonably expect that Jr (or 
something like Jr) will only change by a finite amount,  and thus the condition 
that Jr  should be an extremum can be sensibly interpreted. 

The most immediate task is to define the various quantities in Jr. To 
begin with, all of  the expressions in the first t e r m - - a n d  in particular 
Idy/dul--have already been defined. As for the second term, we will be 
dealing with the expression 

f'f7 S ~  2 t r (erer ~ du dv (16) 
l I - -  

for real numbers tl < t2 and disjoint y, ~ ~ F. Here y ' (  is defined by 

y,~:' = (17) 
du du i=1 du du 

2 The expression sr(,),e(v ~ is defined as follows. Let p = (p~ . . . .  ,P4), q = 
( q l , . . - ,  q4) be points in R 4. Then 

3 

s~.q = ( P 4 -  q4) 2 - Y~ ( P , -  qi) 2 (18) 
i = 1  
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It is simple consequence of  the definition of  the Dirac g-function that 

(sa, e(~)) dr= ~r[~(t-r)+~(t+r)] dv (19) 

where t = t~ = a 4 -  ~/4(v) and 

r=r~={ ~ [a--~i(v)]2) (20) 

We have here the more familiar one-dimensional Dirac generalized function, 
and so S can be expressed in the following way: 

S -- (erer) ~_ (Y'~')ret 
q \ 2radv 2rret / 

where, for a given u, radv = rv<u),~*, where v* is the unique real number  with 
the property that rv<,),~. = tv<u),~.. Similarly, rr~t = rv(~),~,, where v' is such 
that rr<~),~, = -tv~,).~,. The product  y ' s  c' is evaluated by taking y '  at y(u)  on 
y, and then ( '  at the points on ~c diagonally above and below y(u).  

The only thing that remains to be explained is the inequality y < ~ in 
the expression for Jr .  The set F is certainly countable, and therefore we 
may find an injection F--> Z, the integers, thus defining a total ordering of 
F. Any such total ordering of  F will do, and its only purpose is to ensure 
that the integral will be evaluated exactly once for each pair of  disjoint 
paths in F. The possibility of  self-interaction of a particle on itself is thus 
excluded at the outset, and hence one of the great difficulties of  classical 
field theory simply plays no role in Fokker 's  theory. 

2.6. A Correspondence between Fokker's Theory and the Maxwell Theory 

In essence, the first term of Jr  describes a relativistic version of Newton's  
first law. The second term is a relativistic version of  Coulomb's  law. I will 
now show that the variational principle Jr  = extremum results in a law of 
particle motion corresponding with the Lorentz equation. To begin with, it 
should be remarked that the notion of fields (in the sense of  mappings from 
R 4 to some other structures) was not necessary in the description of Fokker 's  
theory. All that was used was the idea of particle paths and distances along 
the paths. In order to establish a correspondence with the more conventional 
ideas, it will be necessary to identify some quantity within theFokke r  theory 
to correspond with the idea of an electromagnetic field. To this end, let 
x c R 4 be such that x lies on no path in F. Let 

A~r = _ r162 dv (22) 
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With this definition, each point x ~ R 4 not on ~: is associated with a vector 

A(e)(x) = (A]e)(x), A(2e)(x), A~e)(x), A(4e)(x) ) (23) 

Using (19), one sees that A (e) is a smooth vector field on  R4-{~}. I will 
show that this field corresponds to the usual Li~nard-Wiechert potentials 
generated by the particle ~:. The fact that A (e) has the same formal structure 
as the sum of one-half the advanced and one-half the retarded Li6nard- 
Wiechert potentials shows that A (~) certainly satisfies Maxwell's equations. 
But more importantly (remembering that Fokker's theory is a theory of 
particles rather than fields), it is necessary to show that other particles 
y~  F-{~:} describe paths that obey the Lorentz equation with respect to 
the sum of the electromagnetic fields A (e) generated by all of the particles 
~c F - { y } .  Note that the Lorenntz equation for a particle y in a classical 
electromagnetic field given by F is 

m~ y'.', = erFik T'i (24) 

where, for example, y'i = dyi(u)/du for i = 1 , . . . ,  4. 
I shall follow the reasoning in Wheeler and Feynman (1949), but 

observing where necessary at which points additional assumptions are 
needed. To begin with, it will be convenient to choose the proper time 
parameterization for 3,. Thus, assume that [dT/du] = 1 at all points in the 
image of y. Consider a variation of (14), where we restrict out attention to 
just two particles % s ~ ~ F. Define 

J'~,e = - m ,  -~u du + e,e e 6(sv(u),e(~))y ~ du dv (25) 
t l  l I - -  

T h u s ,  J,,~ can be considered as being part of one of the terms in Jr- We 
will consider a variation of the path y between y(tl) and 7(t2). Let a new 
smooth path/3 :R ~ R 4 be given, with the property that/3 (u) = g(u),  for all 
u ~ R - [ q ,  t2]. (Of course, it can no longer be assumed that/3 has the proper 
time parameterization.) Then, for some sufficiently small interval [ - e ,  +e]  
centered on zero, we may define a one-parameter group of smooth, timelike 
paths y ~, indexed by r e  [ - e ,  +e] ,  as 

7~(u) = 3,(u) + r[/3 (u) - 3'(u)] 

=y(u )+nr (u )  where c r = / 3 -  y (26) 

Now let 

J~e = J~,e - Jr (27) 

Our assumptions imply that J~e is ditterentiable at zero. At this stage we 
define 

r r 

J r  = 2 J~,e 
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r and assert that also Jy  is differentiable at zero. But of course this is not in 
general true; it is necessary to postulate that J~ both exists and is differenti- 
able at zero. Then the variational hypothesis implies that 

= 0  (28) 
dr r=O 

for all y ~ F. 
One may write 

d J ~ =  -m~ f '2 d dy~ 
dr J,, dr -~u du 

+e~eeJ,,  dr , _ du (29) 

In order to evaluate this expression, let us begin with the first integral. We 
have 

d Idy~ d d y +  &r =d---Y-~ d__~ 
drr~o . du =-~r -~u r-~u du du (30) 

(Remember that y is assumed to have the proper-time parameterization.) 
Using partial integration, we obtain 

, d r  ~ d u =  + - - o ' d u  (31) \ du / t 2 t du2 

As for the second expression, we have 

ee J,, dr 8(s~,<.).e(v))y g dv du 

= O,, dr [A('D('yr(u))'Y'r] du 

= [a(e)(y + ro ' ) (y '+ ro")] du 
t l  

= o'm Ox----~ y '+ ro"  [A(e)(y+ro')]+~r'A(~)(y+r~r) du (32) 

The second term in this expression is zero at r = 0. The third term can be 
changed by means of partial integration: 

~'~ f'2o_ d (A(~) ) cr'A~)(Y+ rcr)=[~rA(e)]"~- du du 
t 1 t |  

f '~ OA~ ) 
= - -  O'm OX------~-- y" du (33) 

tl  
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Then, combining all terms, we obtain 

dJ~ f'2 [ day,,,+ ,(OA~)OA~)]] 
= crm -my du4 evY" \ Oxm Ox---~ / du (34) dr r=O tl 

I f  we sum over all particles s ~ r y in F (a questionable idea if F is infinite), 
then the derivative should be zero for all such variations ~r of y, and so we 
conclude that 

d2ym 
r m . T .  (35) 

This is the Lorentz equation, but without the terms associated with the 
self-interaction of the particle 7 upon itself. 

In this section a number  of requirements have been placed on the set 
of  continuous paths F. The goal has been to achieve a framework sufficiently 
restrictive to allow equation (35) to be deduced. The description of the 
conditions that could define such a framework has been vague. (A property 
it shares with the existing literature on the subject.) My interest has been 
to provide a sketch of the methods used in the standard classical theory 
sufficient to make the present discrete description more comprehensible. 
But perhaps some readers may be encouraged to go further and pursue a 
more thorough investigation of these conditions. Such a program would 
certainly be interesting in its own right and could be expected to have 
relevance for the discrete theory as well. In lieu of such results, I will retreat 
to the strategy of simply making a definition: namely, a space consisting 
of a set of  continuous paths F that is such that all of  the calculations of 
this section are valid will be called a "Fokker  space." 

2.7. Action and Reaction in Fokker's Theory 

It is interesting and useful to seek further correspondences between 
Fokker 's  theory and the usual formulation. In particular, the idea of energy 
and momentum and the conservation law concerning these quantities play 
important roles in classical electrodynamics. The fact that particles obey 
the usual law of motion (35) shows that, locally at least, conservation of 
energy and momentum holds. Can a global conservation law also be 
deduced ? Consider a particle y in a set of  particles F in R 4. For convenience 
concentrate on the case F = { y ,  ~}. For each point y( t )  in the image of 3,, 
one may define the energy-momentum vector G y to be my dy/du. Note that 
if  we revert to the more conventional units of  time, such that the speed of 
light is given by c ~ 300,000 km/sec,  and if we parameterize y with this 
time (rather than using the proper-time parameterization),  then we obtain 
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the familiar  expressions 

G r _ mvcv m3,c  2 

(1 - v2/c2) 1/2' G~-  (1 - v2/c2) 1/2 (36) 

where G r represents the 3-vector o f  m o m e n t u m  in R 3 and G~' is the energy 
of  the particle. 

In general, this vector  can be expected to change as we move along % 
and the rate o f  change is given by dGV/du=mrd2y/du 2. But after 
examining (35), we obtain 

dGL d27m 
_ _  - -  F r n n  ~ l  n du - mr d u  E - ev y" ~(e)_ , 

_ , (OA(~ e) OA~ )) 
- efT" \ Oxm 8x---7 / 

- ereeTn 8(se(u).x) du 

ox. a(se~u),x) Tu 

f ~ 8 ( s r 1 6 3  =2ere r _ , 2 

We have used the result that  

f f(x) {-~y [8(g(x, y))]} dx = f f(x) {-~y [g(x, y)]} 6'(g(x, y)) dx 

for  test funct ions f and smooth  functions g o f  two variables. The vector  r 
is de termined by the point  x and the points  ~(u) on the image o f  ~: that  
have vanishing Lorentz  distance to x. One can take r to be the sum of  hal f  
the retarded and advanced  distances. At this stage it is convenient  to use 
the wel l -known result 

f f(x) 6'(x) dx = -f'(O) 

for suitable test functions f, and in part icular  

f a'(x) dx-O 

This enables us to write 

f+~6(s,(~),x)y'm,"rdu=O (38) 2ere ~ _ , 2 
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and thus 

du =2%ee _ 8 (se(u),x)(rmy �9 ~ ' Y "  r - 3 " ~ ' ,  r) du (39) 

Now the interesting thing here is that if we look at G e rather than G ~, then 
we obtain a similar expression, but with the sign of r reversed. ( I f  only the 
retarded distances were to be taken--as  in the Maxwell theory- - then  the 
expressions would be identical, up to the change in sign.) Wheeler and 
Feynman next define the expression 

Gin(% s e) = m~rm + mr3~ 

+ 2%er , 2 
1/ - - o o  1) 

x (rr,3'" se'-~:'~7 ' '  r -3 '~r  r ) d u d v  (40) 

This is the ruth component  of  the total energy-momentum vector G for the 
system F = {3, r where m = 1 , . . . ,  4. Clearly G is constant along the paths, 
since the partial derivatives of  G with respect to path lengths vanish. The 
cases m = 1, 2, 3 are the components of  three-dimensional momentum,  and 
m -- 4 is the energy. For the case of two stationary particles, the expression 
for the energy reduces to the usual Coulomb expression %e~/R, where R 
is the three-dimensional distance between them. More generally, the prin- 
ciple of  conservation of energy implies that if the signs of  the electrical 
charges of  the two particles are similar, then--assuming that the two particles 
satisfy Fokker 's  variational pr iciple-- the two particles cannot approach one 
another more closely than some given distance related to the fixed energy 
of the system. 

2.8. Some Simple Solutions to the Fokker Theory 

In this section we examine a number of  configurations of particle paths 
in R 4 that satisfy either Fokker 's  variational principle that Jr--extremum 
or at least the weaker condition (35). These solutions will illustrate, in 
particular, the fact that any action-at-a-distance theory can only be con- 
sidered in global terms. 

Solution 1. At  Most One Charged Particle. To begin, there are the trivial 
cases. These are that F = Q, or that F contains only uncharged particles 
(% = 0, y ~ F), or that at most one particle in F has a nonvanishing electrical 
charge. 

Solution 2. Two Positively Charged Particles Lying in a Plane. The 
simplest nontrivial case is represented by two charged particles F--{3,  ~:}. 
Assume that e~ = ev = my = m r = 1 and that 32 = r = 73 = r = 0, so that the 
particles lie in the x - t  hyperplane in R 4. 
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Now it might be thought that the class of  all F satisfying Fokker 's  
variational principle subject to all these restrictions must be very small, or 
even empty. But this is by no means the case. On the contrary: 

Theorem 2.1. Let (ul ,  u2), ul < u2, be an open interval in R, and choose 
f : ( u l ,  u2)-~R to be some differentiable function with the property that 
[f ' (x)[ < 1 - e for some e > 0 such that f '  is convergent from the left at u2 
and from the right at ul. Assume further that f is twice differentiable. Then 
there exists a set F = {% ~} satisfying (35) such that ~tl(X) = f ( x )  and y4(x) = x 
for all x c ( u l ,  u2). 

Proof We are given the segment y(x),  x ~ (ul, u2). Our first task is to 
construct ~, and also y(x),  for x ~  (Ul, u2). The restriction on the absolute 
value of the derivative of  f ensures that y is timelike between ul and u2. 
Choose the point P = (P~, P2, P3, P4)~ R 4 such that P1 = P2 = 0 and such 
that the conditions 'y4(u0) --/94 = Y l ( U o )  --  P~ and ~/I(U0) -- P1 = yl(Uo)- P1 
hold. Thus P is determined by the pair (y(Ul), y(u2)) in an obvious way. 
Let v4 = P4 and define ~:(v4)= P. Next choose P* to be any point with 
P* - y4(u~) = P* - yl(Ul) and [P* - P41 < ]P* - P~] (Figure 2). 

Thus, we shall say that P* is diagonally above y(u2), and above P. We 
define v2 = P* and ~(v~) = P. One sees then that we also have a great deal 
of  freedom in choosing ~:. In fact, subject to a few small restrictions, we 
can also choose ~: to be almost arbitrary between ~:(v~) and ~:(v2). The 
restrictions are, again, that ~: be twice differentiable between v~ and v2 and 
that ]~1 < 1 in this region. Furthermore, we assume that the second deriva- 
tives of  ~:t exist from the right at ~:(v~) and from the left at ~(v2). Equation 
(35) then gives a condition that ~ ' (v l ) - -eva lua ted  from the r ight - -must  
fulfill. But given this specification at vl, equation (35) then gives a condition 
that ~q'(v2) must fulfill. 

It may now be assumed that some suitable ~: has thus been defined in 
[v~, v2]. The next step in the construction is to extend smoothly the definition 
of  y above v2 up to a point that is diagonally above ~(v2). This is just a 
matter of  finding the unique solution to (35) in this region. One then extends 
the definition of ~ above v2, and so on. The region of definition of y and 

can also be extended below u~ and v~, respectively, in an analogous 
manner.  The fact that e~ and e~ are of  the same sign ensures that at each 
stage of  the construction the paths are disjoint. It is further necessary to 
show that the paths that have thus been constructed are infinitely long in 
both directions. This follows from the energy-momentum conservation 
principle that F must satisfy. �9 

We now have a large class of  sets that satisfy the principle of  stationary 
action with respect to neighboring, sufficiently smooth paths. Of  course this 
does not yet imply (15), even when we restrict our attention to local (but 
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~/(u 2 ) 

Y 

~/(u 1 ) 

Fig. 2 

possibly not particularly smooth) variations. But at least we can prove a 
number  of  related results concerning the smoothness of paths as a " local"  
property. 

Definition i. Let F be a locally finite collection of particles in R 4. I call 
F locally proper at y(t),  where 3/e F and t e R, if there exists a 6 > 0 and 
A > 0 such that for all smooth variations of  3' between 3"(t -/5) and y(t+/5), 
the expression J~ defined in Section 2.6 is well defined and continuous in 
r for Irl < a. I call F proper if this condition holds for all 3' e F and all 3'(t), 
t e R .  

Definition 2. Let F be locally proper at 3'(0. Then F is a local minimum 
at 3 '(0 if there exists a/5 > 0 such that for all smooth variations of  3' between 
y ( t - / 5 )  and 3'(t+/5), the inequality jo<_j~ holds, Vr with I r l<A,  for a 
suitable A > 0. 

Definition 3. With F, % t as above, F is an extended local minimum at 
3'(t) if it is a local minimum at 3,(t) with respect to variations/3 of  3' that 
are smooth, except possibly at a single point between 3 ' ( t - /5)  and 3'(t +/5) 
where /3 is continuous, but possibly /3' is not continuous. At this point, 
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however, both/3~_ and/3'_ (the limits of the derivatives in the approach to 
the point of singularity) exist. (Note that the expression Jr is also meaningful 
with respect to collections of  paths F that are only piecewise smooth.) 

Theorem 2.2. Let F = {3, ~:} be a set of two smooth, disjoint paths in 
R 4. Assume that ev, ee, mr, m e are all positive. Assume further that F is a 
local minimum at 3(0 for some t c R .  Then F is also an extended local 
minimum at y(t). 

Proof In order to produce a contradiction, assume that there does 
exist a piecewise smooth variation /3 of 7 between 3 ( t - 6 )  and 3 ( t +  6) 
for an appropriate 8 > 0, which is such that J~ < j o  with respect to/3. Assume 
that /3 is smooth, except for a single point/3(t0),  where it is continuous, 
but not differentiable. Now for any small e with the property that 0 < e < 8, 
we can alter/3 b e t w e e n / 3 ( t -  e) a n d / 3 ( t +  e) in such a way that we obtain 
a smooth variation 13, that agrees with fl below/3 ( t - e) and above/3 ( t + e). 
Furthermore,/3 ' , (s)  is be tween/3 ' ( to -  e) and/3 ' ( t0+ e) in value. But if (14) 
is examined, noting that for small e the electromagnetic field due to ~ is 
nearly constant, it is seen that the difference between the value of J~ due 
to/3 and the value of j1  due t o / 3 ,  has as upper limit an expression of the 
form const x e. Thus, by choosing e small enough, we can reduce this 
difference to below the value [J~--J~ contradicting the assumption that 
F is a local minimum at 3(t) .  �9 

This theorem shows that if one knows that one of the paths in Solution 
2 is smooth, then the other path should be smooth as well. (One must be 
careful here. I have not shown that the sets produced according to Solution 
2 are local ext rema--or  even extended local extrema--at  all points!) This 
would appear to lead to the idea that piecewise-smooth paths--with genuine 
kinks--can never appear in solutions to Fokker's variational principle. But 
consider the following idea. In the construction of sets F according to 
Solution 2, we required that the paths be smooth, and in particular smooth 
at the points P and P*. What if we no longer require the extension of  r 
say, above P* to be differentiable at P* ? In this case the advanced Li6nard- 
Wiechert potential below P* is discontinuous at 3(u2). Thus, the 
construction of y above y(u2) must also produce a kink at 3(u2). One may 
approximate this solution by paths that are smooth, but sharply curved near 
P and P*, etc. Now the principle of  conservation of  momentum shows that 
they approach a definite solution with a kink. Thus, one can imagine such 
two-particle solutions to Fokker's principle in which an infinite chain of 
such discontinuous exchanges of energy-momentum along the light cones 
between the two particles occur, similar to the photon exchanges of quantum 
electrodynamics. 
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Solution 3. Two Spiralling Particles. The last solution I will consider is 
concerned with the case F = {3, ~}, with both particles having the same mass 
and a nonzero charge, satisfying er = - e  e. Let F describe a double helix, 

~/(t) = (sin(kt), cos(kt),  0, t) 

~:(t) = ( - s in (k t ) ,  - cos (k t ) ,  0, t) 

where k <  1. Then it is clear from the symmetry of this set that, for an 
appropriate choice of the mass m r -- me, the paths satisfy (35). 

This example illustrates an important difference between the Fokker 
and the Maxwell theories. In the case of  the Maxwell theory, two such 
spiralling particles will transfer energy to an electromagnetic field, and thus 
the spiral is unstable. The Fokker theory requires an "absorbing universe" 
(this concept will be developed in the sequel) in order to mimic the 
Maxwellian electromagnetic fields. I f  the universe is not a complete absor- 
ber, then the "fields" of  the Fokker theory do not have the same properties 
as those of  the Maxwell theory. This situation is an obvious consequence 
of the basic action-at-a-distance philosophy: in the absence of an absorber 
there can be no radiation! 

2.9. The Principle of Cause and Effect 

It was mentioned in Section 2.3 that for any reasonable theory of the 
physical world the effects of  a given physical process should only be felt 
afterward. Thus, effect should follow cause in time. Now, if the advanced 
Li6nard-Wiechert  potentials are simply excluded, as is usual in the 
Maxwell theory, then all processes in classical electrodynamics progress 
forward in time, and thus the effect will always follow the cause. But, as 
we have seen, solutions to Fokker 's  variational principle represent a mixture 
of  half  advanced and half  retarded fields. This appears to violate the 
principle of  cause and effect, and for this reason the Fokker theory was 
considered for some years to be invalid. Nevertheless, Wheeler and Feynman 
(1945) showed that it may be possible to have advanced fields without 
violating this principle. In this section I will examine some of Wheeler and 
Feynman's  arguments. 

To begin with, I must point out a number  of  difficulties. "Does the 
Fokker theory violate the principle of cause and effect?" In a sense this 
question can never be satisfactorily answered. The problem is that the 
question has more to do with philosophy than it does with mathematics. 
What shall we consider to be a cause, and what an effect? Perhaps one 
could even restrict one's definition of the idea of a "cause" to be just an 
action that one can think of as being initiated by a human being. But the 
reduction of the question to such an obscure level of  philosophical debate 
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could hardly lead to a satisfactory result! It is better to seek a mathematical 
formulation. 

One could, for example, ask whether a given set F of particles satisfying 
Fokker's variational principle could occur in a solution to the Maxwell 
theory with purely retarded potentials. This would certainly imply that 
Fokker's theory does not violate the principle of  cause and effect. Unfortu- 
nately, such an approach must lead to insuperable mathematical difficulties: 
it is simply impossible to work with exact global solutions to the Maxwell 
theory: one is forced to adopt the usual assumptions--vague statistical 
arguments, assumptions concerning the regularity of  global solutions, and 
even unrealistic cosmological models. But still, granted these limitations, it 
is worthwhile to see whether or not an affirmative answer to our basic 
question can at least be made to appear to be plausible. 

Wheeler and Feynman discuss four different derivations of the relevant 
effect, involving various assumptions. Perhaps the most appealing and 
instructive derivation for us is the fourth one. This derivation makes use of 
the results of Dirac, already mentioned in Section 2.2. These results concern 
the radiative damping force in classical electrodynamics. 

To be specific, let us return to the Lorentz equation, as formulated in 
Section 2.6. It was asserted there that m3"y~' = e.rVikT~ , i = 1 , . . . ,  4. But w h ich  
fields F~k should be taken? In the Fokker theory one has no choice--one 
must take the sum of half  the retarded and half the advanced fields, with 
self-interactions excluded--but  what about the Maxwell theory? It would 
be possible in this setting to choose just the retarded Lirnard-Wiechert  
potentials produced by the other particles ~ ~ 3' in F. But such a choice 
would be false, since it would ignore the (infinite and "singular") field of  
the particle 3' itself. It would also fail to account for the so-called radiative 
damping effect, in which any accelerated classical charged particle emits 
electromagnetic radiation, and thus loses energy (an effect that can be 
observed in simple experiments). According to the Maxwell theory, this 
damping effect must occur even in a universe that is empty, except for the 
one particle. Thus, it is reasonable to try to account for the radiative damping 
effect in terms of the self-interaction of the particle on itself. 

Dirac writes (2e~,/3)(y~"y~ - YTTI) to describe the additional radiation 
damping te rm-- to  be added onto the retarded fields F~j coming in from the 
other particles in F- -which  results in an electromagnetic field with the 
property that the resulting Lorentz equation describes the motion of the 
particle 3' correctly. Using a Taylor expansion to describe the self-interaction 

1 T 3' 3" of y, he concludes that this is equal t o  ~ev(Fo,  re t -  Fij, adv), where F r e  t and 
Fa~dv are the retarded and advanced fields due to % respectively. (Note that 
the fields are to be taken directly at the particle y, where they are "infinite" !) 
Granted the validity of Dirac's formula, one must ask how it fits in with 
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the Fokker theory, where such advanced and retarded fields play an impor- 
tant role. 

Wheeler and Feynman consider the following, somewhat unrealistic 
model. They imagine that everything should be described within the 
framework of R 4 and consider the motion of some particle 3, in a universe 
of particles F. All of these particles produce their own electromagnetic 
fields; in particular, the field produced by the particle 3, is given by 

~ _ !  y F - 2(Fret + Fadv) (41) 

Now they assume that this universe of particles is, in some sense, of limited 
extent, so that it is possible to speak about points "outside" the universe 
of particles. They assume that the radiation F v causes movements of the 
surrounding particles of F, so that eventually the radiation is "absorbed." 
Thus, they write 

1 )'~ \/'l~T~ret "~- Fvadv] ~ = 0 (outside the absorber) (42) 
F 

where the sum is taken over all particles 3, c F. Then then claim that this 
equation implies the vanishing of both the retarded and the advanced fields 
separately, 

~ -  (outside) F r e  t -- 0 
r 

(43) 
F~dv = 0 (outside) 

F 

But this in turn implies that 

(F~et- Fair) = 0 (outside the absorber) (44) 
F 

At this stage it is remarked that the difference of the advanced and retarded 
fields has no singlarities, so that it must vanish everywhere. (This assumption 
brings with it at least the requirement that the particle paths be sufficiently 
smooth! Dirac (1938) showed that for such paths, the difference is free of 
singularities.) Thus, the electromagnetic field at the particle 3' in the Fokker 
theory, due to all the other particles ~ F -{y} ,  is given by 

~( F re t  + Fa~dv) 

,f ! v V ! ,f ,f 
= F ~ e t + ~ ( F ~ e t - & ~ d - Z ~ ( F ~ o t - F a ~ O  

~ ,  F 

= E Ftret+�89 (45) 

This is precisely the sum of the pure retarded fields coming from all the 
other particles in the universe F, plus the usual radiation damping term of 
the Maxwell theory! This means that despite the presence of advanced 
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fields, the principle of  cause and effect can be made to hold in the Fokker 
theory. 

One sees that the key to this argument is the valdity of the formula 

( F r e  t - Vadv) = 0 (46) 
F 

which was derived from the separate vanishing of  the sums of the advanced 
and retarded fields "outside the absorber." 

2.10. Perfect Absorbers of Radiation 

Is it possible to prove that the formula (46) is true for all sets of particles 
F that satisfy Fokker's variational principle? The answer is no. 

Counterexample 1. Let F =  {y, ~} be the set of  Solution 3 in Section 
2.8. Let 

Aadv ----- AadvY + Aadv,~: Aret ____ Aret3, + Aret~: 

Write A* = m r e t - A a d v .  From the symmetry of  the set it is clear that along 
the axis {x c R4: xl = x2 = x3 = 0} we have A * =  0. In particular, we must 
have OA*/Ox4=O here. Now let 0 be the point P =  (0, 0, 0,1)ER4 on the 
axis. Clearly P lies diagonally above the points ( 1 , 0 , 0 , 0 ) e  y and 
( -1 ,  0, 0, 0 )e  s c. Furthermore, the distance from P to each of these two 
points is the same, and since the three-dimensional velocities of the particles 
y and ~: are of  identical magnitudes and opposite directions, the retarded 
field Are t must vanish at P. But this is true along the line L =  
{(0, y, 0, t) e R4: t = (1 +y2)1/2}. On the other hand, depending on the slope 
of  the spiral determined by y and ~: (the constant k in Solution 3), as we 
progress along the line L from P we approach more nearly one of  the 
particles and get farther away from the other. Thus, the difference between 
the advanced distances changes as we progress along L through P, and so 
OAadv/OX 2 ~ 0 at P. This implies that OA*/Ox2 ~ 0 at P, and hence Fret - Fadv 
0 at P also, where Fret and Fadv are, respectively, the retarded and advanced 
fields generated by y and s c together. 

This example shows that the principle of  cause and effect, as described 
in Section 2.9, does not hold for all possible solutions to Fokker's variational 
principle: it is necessary to look for solutions that are, additionally, "perfect 
absorbers" of radiation. How can this idea of a perfect absorber be defined? 

The intuitive idea is simply to imagine a particle y undergoing various 
accelerations and then to consider the retarded radiations being emitted by 
the particle. One imagines that the universe contains a large collection of  
other particles that, in the absence of the influence of  y, would behave in 
a certain way. But then the radiations due to y can be thought of  as 
perturbing the other particles, thus causing them to emit both addi t iona l  
retarded and advanced radiations. The retarded radiations from y are, 
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according to this picture, perfectly absorbed if, when added to all the 
additional radiations due to the perturbations, the result approaches zero 
sufficiently rapidly, far from 3~. The first three derivations in Wheeler and 
Feynman (1945) are based on such reasoning. But how are we to understand 
it? Since the Fokker theory is based on a global variational principle, it is 
difficult to see what meaning can be attached to the idea of small perturba- 
tions to other global solutions to the Fokker variational principle. In fact, 
the argument is really based on the Maxwell theory, and it is tacitly assumed 
that sensible solutions to the Maxwell theory are, at the same time, also 
solutions to the Fokker theory. Now, in view of the seeming impossibility 
of actually obtaining sensible global solutions to either theory, it is perhaps 
best to adopt this style of argument, and thus simply to assume that all 
global solutions to the Maxwell theory, which appear to have the property 
of perfect absorption of radiation in this sense, are also global solutions to 
the Fokker theory. 

However, even if we accept this reasoning, there is still another, 
seemingly irrefutable objection to Wheeler and Feynman's argument. This 
objection is that everything is symmetric in time: it is possible to simply 
exchange the qualifiers "adv" and "ret" throughout all of the formulas in 
Section 2.9, and after this exchange the validity of the formulas must remain 
unchanged! Wheeler and Feynman contend with this argument by noting 
that there is a certain asymmetry in time associated with the "initial 
conditions." But rather than pursuing such delicate reasoning, it seems best 
simply to note that every global solution is necessarily asymmetric in time: 
the universe is expanding! 

Thus, an interesting project would be to examine the absorber proper- 
ties---both in the direction of the past and the future--of  various cosmologi- 
cal models, and see whether they are consistent, according to these ideas, 
with (46). This has been done by Hogarth (1962) and Roe (1969) for various 
conformally flat models. The idea is that the principle of cause and effect 
will be best explained by a cosmological model that exhibits perfect absorp- 
tion in the future and imperfect absorption in the past. It is certainly possible, 
and perhaps worthwhile, to debate the question of whether or not the 
observational evidence tends to support or refute various cosmological 
models. But, as a practical matter, from now on I simply assume that the 
Fokker theory provides a viable basis for classical electrodynamics. 

3. DISCRETE MODEL FOR CLASSICAL ELECTRODYNAMICS 

3.1. Relativity and the Ising Model  

In this section I will be concerned with an attempt to find a discrete 
mathematical framework for space-time, whereby the considerations of 
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classical electrodynamics will play an important role. It seems to be most 
natural to begin by discussing a simple mathematical model that has often 
been used and found to be of  value. This is the well-known Ising model. 
It is, for a given positive integer n, the set of points in R n with integral 
coordinates. One can also write Z" to describe this set more succinctly. 

The Ising model can be most sensibly applied to the analysis of crystals, 
periodic building structures, and the like. But it is also possible to contem- 
plate using it to describe the structure of four-dimensional space-time itself. 
Thus, whereas the space R 4 is to be found in many places throughout any 
physics text, it could be proposed simply to substitute everywhere the space 
Z 4 for R 4. This procedure could be justified with the thought that if the 
scale of  distances were chosen to be sufficiently large, then the discrete 
structure would become so fine as to be undetectable by means of  any 
practical physical experiment. This procedure would have the merit of 
allowing the usual limiting operations of analysis to be applied, at least 
down to a very fine scale, but on the other hand, ultimately the discrete 
structure will become evident, so that the convergence problems of modern 
physics could be avoided. 

Such a plan has, however, one very severe drawback. That is that the 
theory of  relativity--which is universally acknowledged as providing the 
foundation for any discussion of the basic principles of physical space and 
time--will  be violated in an essential and unavoidable way. 

The theory of relativity has as its main premise the idea that all possible 
inertial frames of  reference are equally valid. Thus, for example, there can 
be no physical experiment whose ultimate result is the determination of the 
speed of  the earth through the classical "ether." Now, it must be admitted 
that the measurements of  the cosmological background radiations would 
appear to provide a class of  experiments that do, in fact, violate this basic 
principle of  relativity. But if we add the qualification that the experiments 
should only test local phenomena,  then the principle will continue to hold. 

If  we were to assume now that the Ising model formed the basis of 
physical space-time, then it would be possible to consider the following 
experiment. The experiment would consist of taking finite rectangular boxes 
B and counting the number of points of space-time within B. It would be 
found that for certain orientations of typical boxes--part icularly those that 
are very th in- -a  small movement will suddenly result in the box containing 
either very many, or very few, points. For other orientations of B this 
phenomenon will not be observed. By this method the orientation of the 
underlying Ising model could be determined, and thus the preferred inertial 
frame of reference would be discovered. 

One might think, then, that it is necessary to reject the principle of  
relativity if we are to continue with an investigation of discrete spaces as 



Discrete Model for Classical Electrodynamics 1173 

candidates for providing good models of space-time. But this is by no means 
the case. On the contrary, our simple experiment suggests a way of defining 
a class of suitable relativistically invariant discrete models. 

Consider some distribution of points throughout R 4 with the property 
that (1) for any finite Borel set B, the number of points in B is finite, (2) 
the expected number of points in B is proportional to tx(B), the measure 
of B, and (3) the number of points in B1 is independent of the number of 
points in Bz for disjoint sets B1 ~ B 2 = O. Now it is well known that these 
conditions define a Poisson process on R 4 (see, for example, Cox and Isham, 
1980). If we were to take such a process as providing in some way a basis 
for a discrete theory of space-time, then, by definition, our counting experi- 
ment would fail to reveal any preferred orientation of the underlying model. 
Note that here I am making use of the following result. 

Theorem 3.1. Let 0: R4-)R4 be a Lorentz transformation. Then for 
any Borel set B c R  4 we have /x(B)  = tx(0(B)).  

A Lorentz transformation is by definition any affine transformation of 
R 4 that leaves the line element ds 2= dx2+ dy2+dz 2 -  c dt 2 invariant. (The 
four coordinate axes of R 4 can be denoted x, y, z, t, whereby the last 
coordinate is taken to be the time of a typical point.) 

Proof of Theorem 3.1. Without loss of generality we may assume that 
B is the standard four-dimensional cube Bs, the coordinates of all of  whose 
points have values between 0 and 1. By performing translations and rotations 
where necessary, it is also possible to assume that qJ(0)= 0, and that 0 
leaves the y and z axes invariant. Let Pl be the point (1, 0, 0, 0), and let 
~(p l )=(Xl ,0 ,  O, tl). Then we have tl=(l+x~) 1/2. Similarly, if p2 = 
(1, 0, 0, 1), then we must have O(P2) = (x2, 0, 0, t2), where x2 = t2, and we 
may calculate that x2=xa+(l+x2)  ~/2. Elementary geometric arguments 
show that the Euclidean volume of 0(B)  is 

2 \ x a / . l  

and therefore the measure of B is invariant under 0- �9 

At this stage, then, we have managed to improve on the simple Ising 
model for four-dimensional space-time: it is only necessary to examine the 
sample points of a standard Poisson process on R 4. The space obtained is 
relativistically invariant. 

Now it may be argued that my objection to the Ising model is unfair. 
According to this view, the actual structure of space-time is unimportant, 
and it should play no further role in the processes of physics; it should do 
nothing more than provide an unobtrusive backdrop for the physical events 
occurring within the space-time. Such a view may well reflect the philosophy 
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of  the theory of relativity. Such a view may indeed also be satisfied by the 
picture of  space-time in terms of  an abstract probability space. 

Nevertheless, the basic geometry of  space-time should, in fact, reflect 
the properties of the observable world. This must lead us to question not 
only the Ising model, but also the model of space-time as a probability 
space. After all, it is one of  the tenets of modern physics that only that 
which can be observed  should be allowed to have a place in physics. The 
Ising model loses its validity as soon as it can be observed, and thus it fails 
this test in a most profound way. My objection to the probability space 
model is only slightly more subtle. It is true that attempts have been made 
to understand the probabilistic character of quantum mechanics in terms 
of  an underlying probabilistic space-time. [See, for example, Nelson (1967) 
in this connection.] But the fact is that this way of  going about it is based 
on the Euclidean space R 4, which is, after all, the space with which one is 
supposed to be dissatisfied! The use of R 4 and the formulation of  physics 
in terms of  differential equations implies an infinitely fine and complicated 
structure that we will never be able to observe in practical experiments. 

3.2. Discrete, Partially Ordered Sets 

If we decide to reject the idea of Euclidean space as providing a basis 
for the geometry of physics, then what alternatives can there possibly be? 
It seems best to begin by discussing things in a very abstract setting. Surely 
the idea of  a partially ordered set must play a central role in the formulation 
of  any physical theory. The ordering reflects the ordering of time, and by 
taking the definition of a part ia l ly  ordered set, we are doing nothing more 
than excluding the logically impossible situation of having time running 
around in circles. Indeed, the space R 4, together with the usual ordering of 
the theory of  special relativity, is itself a partially ordered set. Therefore I 
will begin by considering as a model some partially ordered set W, with 
additional properties yet to be determined. 

The main property one would like W to have is that it be discrete. 
Certainly R 4 is not discrete, but the definition I have in mind is the following. 

Def in i t ion  1. A partially ordered set W is discrete if, for any two 
elements a, b ~ W, the set W a c~ Wb = {W C W :  a <-- w <-- b} is finite. 

Obviously there are many possible discrete, partially ordered sets 
(p.o.s.). Any finite p.o.s, is discrete. Also, Z ~ (the set of points in R n with 
integral-valued coordinates) for any positive n, taken together with the usual 
Lorentz ordering, is discrete. (The Lorentz ordering is given by 

a<-bC:>{a,,<-b,,  and ( a l - b l ) 2 +  ' '  " + ( a , ~ _ l - b , , - 1 ) z < - - ( a , - b , , )  2} 

for a, b ~ R".) 



Discrete Model for Classical Electrodynamics 1175 

Z" is also discrete with respect to the ordering g ivenby  

a <- bc:>{ai <- bi, V i  = 1 , . . . ,  n} 

One could go on and examine many further se ts- -but  most have  little to 
do with the requirements set by phys ics- -and  thus it seems reasonable to 
look for a somewhat stronger condition. 

Definition 2. A partially ordered set W is strongly discrete if for any 
two elements a, b ~ W, the set Aab = {w ~ W: w -< a and not w -< b} is finite. 

Clearly, for all a, b c W we have W a ~ Wb c Aba u {a}, so that strongly 
discrete implies discrete. But, for all n > 1, Z n combined with either of  the 
orderings defined above is discrete, but not strongly discrete. On the other 
hand, any finite p.o.s, is also strongly discrete. Are there infinite strongly 
discrete p.o.s.? A trivial example is Z, the set of  all integers, with the usual 
total ordering. There are other, equally trivial examples, which are also 
equally inappropriate as models for space-time. But does there exist a 
strongly discrete p.o.s, that gives a "reasonable"  approximation to R ", n > 1, 
say? Consider the following. 

Example  1. Let W be a subset of Z 2, with the Lorentz ordering. In 
fact, W is a subset of  the set Y--  {(z, - 2 " )  ~ Z2: n ~ N, the positive integers}. 
W consists of  the set of  points (z, u )~  Y with the property that z=-0 
(mod 2u). 

This example is obviously discrete, but is it strongly discrete? To see 
that is, one need only note that there can exist no two points (z~, Ul), 
(z2, u2)~ W such that z~ +z2 = ul + u2. For, assume that, say, (Zl, u~) and 
(z2, u2) are two different points such that z l - z 2 =  u ~ - u 2  and lud> lu21. 
Then we would also have (0, u~) and (z2-Zl ,  u2) satisfying this condition, 
where both (0, u0  and ( z2 -  z~, u2) are elements of  W. But then since W c  Y, 
we must have [Z 2 - -  Z1] "4-[U2[ = 2" and lu21 = 2 m for some n, m ~ N, and at the 
same time we are required to have z2-z l - - -0  (mod 2u2), a contradiction. 
Therefore any point (z, u ) c  Z 2 has at most two elements of  W diagonally 
below it. Given any two points s, t ~ W, the set W ~ n Wt is finite ( W ~ is the 
set of elements of  W above s and Wt is the set of  elements of W below t). 
Hence W is strongly discrete. 

The set W can be extended into the upper  half-plane of Z 2. For example, 
let W* = W u Z~,  where Z2+ = { (z, u) c Z2: u -> 0}. Then W* with the Lorentz 
ordering is also strongly discrete. W* has the property of  being evenly 
distributed throughout "horizontal"  slabs in R 2. But, at least in Z2_, it is 
very unevenly distributed in vertical slabs. In fact, W rapidly becomes very 
thinly spread out as we go downward through W. Also, it is not difficult 
to see that examples similar to this W are possible in dimensions higher 
than two. 
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Is this change in the density of  points in the direction of the ordering 
an undesirable property in a model for space-time? Certainly it is a departure 
from the usual requirement of  homogeneity in time, as exhibited by 
Minkowski space (the space R 4 together with the Lorentz metric structure). 
But on the other hand, a metric that changes with time is just what is needed 
to model the expanding universe. 

Example 2. Take Z 4, together with the Lorentz ordering. We have seen that 
this set is not strongly discrete. However,  we can choose any positive integer 
No ~ N and then define an equivalence relation on Z 4 by means of 

(Xl, Yl, Zl, tl) ~ (x2, y~, 2"2, t2) r xl - x2 -= 0 mod No 

Ya-y2=- 0 mod No 

zl - z2 -= 0 mod  No 

We can denote the set of  equivalence classes by WT, a set embedded in the 
space consisting of the product  of  a 3-torus and the real line. Given two 
points ql, q2 6 WT, then ql < q2 r 3pl ,  P2 ~ Z 4 such that Pi ~- qi, i = 1, 2, and 
Pl <P2. Clearly this makes WT a discrete p.o.s. The fact that it is strongly 
discrete follows from the fact that the three-dimensional torus is compact.  

It might be objected that the set WT of Example  2 cannot provide a 
good model of  the universe, since it is known that the later is infinite in 
extent. But is this true? Segal (1976) has given good reasons to support  the 
idea that a space such as S 3 x R, i.e., the product  of  the 3-sphere and the 
real line, could provide a better model for cosmology than the models 
usually considered by physicists. For example,  he shows that the cosmologi- 
cal redshift of  light can arise through an interesting effect, more subtle than 
the simple Doppler  explanation that is usually invoked. 

His main premise seems to be the idea that when making astronomical 
observations from the earth, we naturally view things in the tangent space 
R3x R. Thus, the interpretation of these observations implies (assuming 
S 3 x R is the proper  space for cosmology) some particular mapping R 3 x R 
S 3 x R, where the null point is mapped  onto the point where the astronomical 
observer happens to be situated. Clearly, this mapping cannot preserve 
distances. The standard idea is to assume that, in any case, there is no 
distortion in the units of  time. Perhaps this reflects an unconscious desire 
to keep the idea of " t ime"  as being something more absolute than "space."  
But from the mathematical  point of  view, there seems to be nothing to 
object to in distortions of  both the units of  space and time in the mapping 
R3x R ~  S3x R. In fact, rather than simply choosing the identity mapping 
on the second component ,  one could argue that it is a sensible idea to 
require instead that the mapping be angle-preserving. This results in a 
distortion of  time as well, giving the cosmological red shift of  light. 
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Such models, of the form K 3xR, where K 3 is a compact  three- 
dimensional space, are doubly attractive for us, since also they allow us to 
easily construct many examples of  strongly discrete, partially ordered sets: 
Practically any discrete p.o.s, that is constructed on the basis of  such a 
model is also strongly discrete. 

3.3. Why Four Dimensions? 

The title of  this subsection is a question of the greatest importance 
when it comes to the formulation of a new geometric framework for physics. 
This geometry with which we are famil iar-- three dimensions of  space and 
one dimension of t ime-- is  strongly characterized by its dimensionality, and 
one could even argue that the main difference between geometry and algebra 
is the fact that the former is concerned with dimension. Now, following 
Einstein's "Genera l  Remark,"  we are looking for a "purely algebraic theory 
for the description of reality." Thus, it is necessary to think about how the 
idea of dimension can be sensibly applied to the class of  discrete, partially 
ordered sets. From the outset it must be admitted that I have been unable 
to find any particularly satisfactory answer to this question. 

Definition 1. The discrete, partially ordered set W is n-dimensional if 
there exists a mapping ~ :  W--> R n that is one to one and order-preserving, 
where the Lorentz ordering on R" is being taken, and where n ~ N is the 
smallest integer with this property. 

This definition undoubtedly establishes the simplest and most direct 
connection between abstract, partially ordered sets and the question of 
dimension. But it leaves largely open the question of why four dimensions 
are imporant.  For example,  it is not difficult to see that for each n, Z" is 
n-dimensional according to this definition, and so the number  four seems 
to remain rather mysterious. One might think that if we limit ourselves to 
finite, partially ordered sets, then the construction of n-dimensional 
examples for arbitrary n would be more difficult. But consider the following. 

Example 1. Given n c N, let Wn be a p.o.s, with 2"+  n elements. We 
write 

W = { e l , . . . ,  e,, u l , . . . ,  u2"} 

The first n elements e l , . . . ,  e, are such that there are no ordering relation- 
ships between them. That is, for all i, j c { 1 , . . . ,  n}, we have neither e~ < - ej 
nor ej <- ei. The remaining 2" elements u l , . . . ,  u2, are determined as follows. 
Clearly there are 2" possible ways that an element of  IV, can be beneath 
some collection of elements from {el, � 9  e,} while not being beneath the 
others and also not being above any of the elements of  { e l , . . . ,  e,}. The 
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set { u l , . . . ,  u2 o} is chosen so that each of these possibilities is accounted 
for by precisely one of  the elements of  the set. 

Theorem 3.2. The set W, of  Example 1 is n-dimensional according to 
Definition 1. 

Proof Given that there is a one-to-one, order-preserving mapping 
aid': W n "->R m for some rn ~N, then, since W, is finite, we can find an 
( n -  1)-dimensional hyperplane R~ '-1 of the form 

RT-1---{(x1,. . .  ,Xn_l,  t ) c R " :  t is fixed}, 

which is such that ~ ( W , )  lies completely above R7 -1. Now for each element 
w ~ ~ ( W , ) ,  let Bw be the set of points in R7 -1 that lie beneath w. Clearly 
Bw is an (n - 1)-dimensional ball whose boundary is an (n -2) -d imens ional  
sphere Sw. The set of  all these balls represents W, in the sense that it forms 
a partially ordered set under inclusion, which is isomorphic to W,. We may 
assume that Sw n S~ is either empty, or else it is an (n -3 ) -d imens iona l  
sphere, for any two different elements w ~ u in W,. Furthermore, if we look 
at the set of all ( n - 3 ) - s p h e r e s  that are thus defined, then they intersect 
one another either in the empty set, or else an (n -4 ) - sphe re ,  and so on. 
That is, the spheres are in "general position." At this stage we use a result 
that is of  interest in its own right. 

Lernma 3.3. Let Si, i = 1 , . . . ,  m, be spheres of  dimension n - 1 embed- 
ded in S", the standard n-dimensional sphere. If  m > n + 1, then the set 
S " - { S ~ , . . . ,  S,,} contains fewer than 2 m connected components. I f  m -  < 
n +  1, then there are at most 2 m connected components in the this set. 

Proof We use induction on n. For n = 1, the assertion is obvious. 
(Remember that a 0-dimensional sphere consists of  two points.) Therefore 
assume it is true for some given n. Assume furthermore that it is not true 
for n + 1. Thus, there exist m n-dimensional spheres Si, i = 1 , . . . ,  m, in S "+~ 
where either (case 1) m >  n + l ,  such that there are at least 2" different 
connected componens in S " + I - { s ~ , . . . , S m } ,  or else (case 2) m < - n + l ,  
such that there are at least 2" + 1 such components. Assume that rn is the 
smallest such integer. 

Now take the sphere Sin. The sphere Sm is an n-dimensional sphere. 
For each i < m we have that Si n S,, is either empty or else it is an ( n -  
1)-dimensional sphere (which might degenerate into a single point). Thus, 
applying the inductive hypothesis, we have that Sm - { S ~ , . . . ,  S,,_1} contains 
fewer than 2 m-1 connected components in case 1, or at most 2 m-~ such 
components in case 2. However, each such component can at most split a 
component of S "+~ - { $ 1 , . . . ,  S,,_~} into two further pieces. In case 1 this 
would mean that the sum of two numbers no greater than 2 "-~, and one 
being less than 2 "-~, is itself at least 2". This is impossible. In case 2 we 
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would have the sum of two numbers, both no greater than 2 "-1 , being 
greater than 2 m. Again impossible. �9 

By noting that the set R" can be considered as a kind of degenerate 
sphere--and noting that the proof  carries over to this case--we have: 

Corollary. The lemma is also true for the set R n -{$1,  . . . ,  Sin}. 

Remark. If all of the spheres intersect one another in further nondegen- 
erate spheres, then in case 2 of the proof of the theorem, the number 2" 
can be achieved. 

Now we continue with the proof  of Theorem 3.2. The fact that there 
exists an order-preserving embedding of Wn in R n follows from the Remark. 
That there is  no such embedding of Wn in R n-1 follows from the 
Corollary. �9 

Example 1 shows that it is hopeless to expect to find an explanation 
of the fact that space-time is four-dimensional in terms of the simple 
Definition 1. On the other hand, this definition reflects only the (flat) 
geometry of the special theory of relativity. In thinking about typical 
examples of discrete, partially ordered sets, it often appears that a slight 
relaxation of Definition 1 would allow a set of high dimension to be viewed 
sensibly as being, in fact, of  lower dimension. Furthermore, when gravity 
is brought in, and with it the general theory of relativity, one finds that the 
light-cones beneath points of space-time--representing the set of points less 
than the given point- -become curved. 

Now, according to the general theory of relativity, objects that appear 
to be deflected by the force of gravity are, in reality, following straight paths 
through a curve space-time. This curvature of space-time can also be directly 
observed--in a more conventional sense---by looking at one of the recently 
discovered quasars whose light is so curved that it appears on the earth to 
be split into a number of separate images. One is led then to the following 
alternative definition. 

Definition 2. The set Cs = {(x, y, z, t ) c  R4: t--< 0 and X2"~ y2q_ Z2~ t 2} is 
called the standard light-cone beneath (0 ,0 ,0 ,0) .  Any set H , =  
{(x,y, z, t )cR4:  t is fixed} is called a horizontal hyperplane in R 4. Any 
ditteomorphism ~ : R 4 ~ R 4 that maps horizontal hyperplanes onto horizon- 
tal hyperplanes is called a level-preserving mapping. Then a subset C 6 R 4 
is called a proper light-eone C:> there exists a level-preserving mapping 
with ihe property that C = q~(C,). Two proper light-cones C1 and (22 will 
be said to intersect normally if either one is contained within the interior 
of the other, or else there exists a level-preserving mapping, mapping the 
standard light-cones beneath the points (0, 0, 0, 0) and (2, 0, 0, 1) onto C1 
and C2. A discrete, partially ordered set W will be said to have a proper 
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representation in R 4 if there exists a set of  proper  light-cones Q in R 4 that 
are such that the interection of each pair of  cones in Q is normal and a 
one-to-one, order-preserving mapping from W to Q (Q is naturally ordered 
through set inclusion.) 

It seems reasonable to require that any discrete, partially ordered set 
that is to be considered as a model for space-time should have a proper  
representation in R 4. By replacing R 4 with R" throughout Definition 2 for 
any n ~ N, we obtain the idea of a proper  representation of a given discrete 
p.o.s, in R". 

Definition 3. The discrete partially ordered set W is n-dimensional if 
there exists a proper  representation of W in R n and n is the smallest such 
integer. 

It is not difficult to find discrete p.o.s, that are n-dimensional, according 
to Definition 3, for n = 1 , . . . ,  4. But I have been unable to find an example 
of  a finite, discrete p.o.s, that is n-dimensional for some n > 4. 

The question can be more easily resolved, however, if the definition 
of proper  representations is strengthened somewhat. 

Definition 4. The discrete p.o.s. W is strongly n-dimensional if there 
exists a proper  representation of W in R 4 such that there exists a horizontal 
hyperplane I-I, with the property that each proper  cone C in the set Q (as 
in Definition 2) intersects H, in a three-dimensional ball. Furthermore,  H,,  
together with all these intersections, is topologically equivalent to the space 
in the (four-dimensional case of  the) p roof  of  Theorem 3.2. 

Now, if Definition 4 is chosen, we obtain an idea of dimensionality 
that, arguably, is appropriate  for dealing with the curvatures required by 
gravitation, and yet the sets W, of Example 1 are in each case n-dimensional 
according to this definition as well. Below I examine a completely different 
definition of  dimensionality, based on the idea of "particle paths." 

3.4. Particle Paths in Discrete Sets 

Until now, I have made no use of  the fact that the discrete model for 
space-time is to be based on Fokker 's  theory of  classical electrodynamics. 
But the most superficial examination of this theory will reveal the fact that 
it is concerned exclusively with the behavior of  par t ic les--rather  than points, 
as in the usual field theory- - in  R 4. Now, if we are to adopt  the idea of 
discrete, partially ordered sets with proper  representations in R 4 as our 
model for space-time, then it will be necessary to progress a step further 
and define "particle paths"  within such sets. 

There is, admittedly, a certain difficulty in this. In classical electrody- 
namics, particles are infinitely long. (I am excluding "big bang"  cosmologies 
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here, since they are not usually discussed in the context of classical electrody- 
namics.) On the other hand, in quantum mechanics (a theory itself based 
on the idea of particles) particle creation and annihilation events play a 
role. Thus, here I define a concept of discrete, partially ordered sets with 
a particle structure in which the particles are infinitely long. But I certainly 
will not exclude the possibility of generalizing this definition to include the 
phenomena of creation and annihilation, vacuum loops, and in general all 
o f  the particle structures normally considered in Feynman diagrams. 

Definition 1. The discrete, partially ordered set W has a particle struc- 
ture if W is the disjoint union of a set of totally ordered subsets P~, i c 5 ~, 
for some index set ~. For each i, P~ is isomorphic to the integers Z, considered 
as a totally ordered set, and the ordering on Pi is the ordering inherited 
from W. 

It is interesting to look for various examples of sets with particle 
structure. Clearly there can be no finite p.o.s, with particle structure; the 
most trivial true example must surely be Z itself. But perhaps it is best to 
combine the idea of particle structure with the concepts met in Section 3.2. 
For example, does there exist a strongly discrete, partially ordered set with 
particle structure? 

Example 1. Let W = {(i,j) c Z2: IJl -< I il}. The set w is given the following 
ordering: p = (Pl,  P2) -< q = (ql, q2) r ~ q2. The set W has a simple par- 
ticle structure given by the rule that p = (Pl,P2) and q = (ql, q2) lie in the 
same particlec:>pl = ql. 

This example shows that such sets do indeed exist. It also illustrates 
a further interesting point: W is symmetric with respect to the ordering 
relation, i.e., the mapping ~ :  W ~  W given by ~ ( ( P l ,  P2)) = (P~, -P2) is an 
order-reversing correspondence, which shows that W would be an equally 
good example if the symbol --- had simply been substituted for the symbol 
-<. But it could hardly be said that W is evenly distributed throughout 
horizontal slabs of R 4. 

Example 2. Let W be the space of Example 2 in Section 3.2. The 
obvious particle structure here is given by the rule that two points in W lie 
on the same particle precisely when they lie on the same vertical line. 

3.5. Another Approach to the Question of Dimension 

In Section 3.3, the idea of "dimension" for discrete, partially ordered 
sets was discussed in terms of embeddings or representations in Euclidean 
space R n. But the fact that Fokker's theory is based so strongly on the idea 
of particles leads naturally to the thought that perhaps the dimensionality 
of space-time is determined in some way by this particle structure and the 
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requirement that the expression (14) should be an extremum. The first term 
in (14), corresponding to Newton's first law of motion, is of less interest 
in this regard, but the second term, which describes particle interactions, 
may have some relevance. In fact, after studying the expression, it becomes 
clear that it describes the interactions of pairs of  particles. The behavior of 
a large number of particles is determined by the sum of the pairwise 
interactions, thus confirming the linear character of classical electrody- 
namics. Let us therefore take some pair (3, ~:) ~ F, with 3' ~ ~:- The fact that 
both 3' and ~: are timelike and infinitely long means that any point x in 
space-time is uniquely associated with four points on y u ~:, namely the 
intersections of  the light cones above and below x with the two particles 3' 
and ~:. Now, if one is prepared to accept this phi losophy-- that  is, say, that 
the points of space-time should really be thought of as being 4-tuples of  
points on typical pairs of particles--then it is clear that a conception of 
four dimensions of space-time must come about. 

But one cannot, in general, simply identify the space of  such 4-tuples 
with the usual 4-dimensional space R 4. For, let us call the space of  all such 
4-tuples on (3, ~:), Rre. Then we have described a mapping ~:R4-~Rv~. 
This mapping depends strongly on the paths y and ~, but it is clear that 
no matter how y and ~: are chosen, �9 cannot be everywhere one to one. 
For example, if y is given by y(t) = (1, 0, 0, t), Vt ~ R, and ~:(t) = ( -1 ,  0, 0, t), 
then we have ~((x ,  Yl, zl, t)) = ~( (x ,  y2, z2, t)) if yl+zl=yZ+z~.2 2 This 
example might serve to damp our enthusiasm for the idea, but on the other 
hand, observe that, in this special case, at least one dimension seems to be 
lost due to the extreme symmetry of  the particle pair (3, ~c). The following 
example is, however, even worse. Let y(t)= (It2+ 1] 1/2, 0, 0, t) and ~:(t)= 
(-[t2+l]1/2,0, O,t), V tcR .  It is not difficult to see that in this case, 
�9 -l(Rre) = Q! But it is difficult to imagine that such a situation could arise 
in any sensible solution to classical electrodynamics. Therefore, it is reason- 
able to make the following definition. 

Definition 1. A particle y in R 4 is regular if for each point x ~ R 4, there 
exist ta, tb ~ R with y(ta) above x and y(tb) below x. 

From now on I assume that all particles considered are regular. 

Definition 2. Let y and ~: be two nonintersecting, regular particles in 
R 4. The pair (% ~:) is in general position if the mapping xI~':R4~Rv~ is at 
most two to one [i.e., ~ - l ( v )  consists of at most two points for each 
I-) C ~ I f ( a4 ) ] .  

Theorem 3.4. There exist pairs of paths in R 4 that are in general position. 

Proof Define the pair (% ~) by means of the following rule: Vt, y(t) = 
(0, 0, 0, t) and ~:(t) = (1, t/2, O, t). Now let Pl < ql be two points on 3/. Then 
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the intersection of the cone of  points diagonally above p~ and the cone of 
points diagonally below q~ is a 2-sphere S 2 in some hyperplane Hr of the 
form Hr = {(x, y, z, t) ~ R4: t = T}. On the other hand, if P2 < q2 are two 
points on ~:, then the intersection of the cone of points diagonally above P2 
and the cone of points diagonally below q2 is a two-dimensional ellipsoid 
E 2 that lies skew to HT. Now, E2nHT is either empty, or else a single 
point, or else a one-dimensional sphere (circle) whose axis in HT does not 
pass through (0, 0, 0, T). Only the last case could lead to more than one 
point being in E 2 n  S 2, but even here there can certainly be no more than 
two points in the intersection. �9 

The use of the term "general position" suggests the idea that, given 
any pair of regular particles (3, ~) in R 4 and a sensible idea of distances 
between particles, then there exists another pair of particles (Yl, ~1) that 
are "near"  to (3, ~:), such that (3'1, ~:~) are in general position. However, 
this is not true. For example, one can construct pairs of particles that spiral 
about one another and cannot be near a pair in general position. But the 
properties of  such examples are tedious to prove and unimportant for our 
further purposes. In any case, it might be thought that the points at which 
the condition of Definition 2 does not hold are rather special, being due to 
the properties of a continuous space, and thus one could imagine that when 
carrying these ideas over to the discrete case, nothing will be lost if it is 
assumed that all pairs of particles are, in fact, in general position. 

3.6. Positions in Discrete, Partially Ordered Sets 

Fokker's theory is concerned with particle paths, but beyond this, it is 
expressed in terms of a variational principle. Given any set of particle paths 
F, we are expected to assign some value Jr to F, and the idea is that a set 
with the property that Jr  is an extremum can be thought of as representing 
a possible universe of particles. But this valuation function Jr is defined in 
terms of distances within R 4. Our goal is to describe space-time in terms of 
discrete partially ordered sets, so it is clear that we will need to adopt some 
reasonable conception of "distances" within such sets. What possibilities 
are there? 

One might, for example, take the fact that in a discrete, partially ordered 
set W there are at most finitely many points between any two points a, b c W. 
Then a simple definition would be that the distance between a and b is 
given by this number. This definition only makes sense for pairs of points 
related to one another (either a < b or b < a) within the ordering on W. 
However, it is usual to define distances in the theory of relativity by means 
of thought experiments that involve bouncing beams of light back and forth 
between spatially different points. (Practical modern surveying makes use 
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of  this technique as well.) An analogous definition for distances between 
points u, v c W with neither u -< v nor v -> u could be established for discrete 
p.o.s. But this approach to the question of  distances must surely be inap- 
propriate. The reason is not difficult to see. 

First of  all, W - - o u r  discrete model for space-t ime--is  not to be an 
abstract, unobservable backdrop for the processes of  physics. On the 
contrary, we would like it to be defined in terms of these processes themselves. 
But this leads to the following thought. In the center of  a very dense 
collection of par t ic les- - for  example, in a s ta r - -we  would expect there to 
be a great many points of  W between any two given points al < bl. On the 
other hand, far away in interstellar space, if we are given two other points 
a2 < b2 that are, according to conventional ideas, approximately the same 
distance apart  as al and bl,  then we would expect to have much fewer 
points between a2 and b2 than between al and bl. Thus, distances in W 
would (comparatively speaking) become "compressed"  in interstellar space 
and "extended"  within the interior of  stars. Now indeed, the general theory 
of  relativity is based on the idea that the presence of matter alters the 
metrical properties of  space-time, and in fact it also predicts such an 
"extension" of space-time in the presence of matter. But this effect in general 
relativity is very much smaller than what would be given by our proposed 
definition. In addition, gravity is felt over long distances, but this definition 
of  distances in W would only produce a very short-range gravitational effect. 

Therefore we are prompted  to look for another idea, and, for a number  
of  reasons, the following definition seems to suggest itself. 

Definition I. Given a discrete, partially ordered set W, a position in W 
is a subset C c W that itself can be decomposed into two nonempty subsets 
C = C + u C -  such that: (i) x -< y for all x ~ C - ,  y c C +, and (ii) C is maximal 
in the sense that there exists no set D c W, with D = D § u D - ,  satisfying 
condition (i), such that C § c D § and C -  c D - ,  and yet D r C. 

It will prove convenient to work with the set of  positions in a given 
partially ordered set W, rather than with the elements of  W directly. In 
order to get some feeling for this concept, I will examine a number  of 
examples,  and present a new definition of discreteness. 

Theorem 3.5. Let W be a discrete, partially ordered set, and let a c W. 
Then A = W  a U W a  is a position, where W a = { w 6 W : w - > a }  and Wa= 
{we W: w<-a}. 

Proof. Property (i) of  Definition 1 is trivially satisfied by A. Now let 
D be a set as in property (ii) of  the definition. Let z ~ D- .  Then z-< y for 



Discrete Model for Classical Electrodynamics 1185 

all y ~ W ~. In particular, z <_ a, and therefore z ~ Wa. Thus, D -  = Wa. The 
fact that D + =  W ~ follows by symmetry. �9 

Remark. It may be interesting to consider the following definition. We 
have just seen that W ~ u Wa is always a position. But is, say, the set 

X~={w~ W: w>-a}w{w~ W: w < a }  

also a position? Now, if W is finite, then clearly there must exist an a such 
that Xa is not a position. Let us call the set W complete if X~ is a position, 
Va ~ W. Question: What properties do the complete sets have? 

Definition 2. Let C be a position in the discrete, partially ordered set 
w. The element a e W lies beneath C if a c C +. The element a lies above 
C if a e C- .  Finally, C lies between the two elements a < b of  W if a is 
beneath C and b is above C. 

The definition can be extended to include positions as well. Thus, the 
position D lies above the position C if D + c C +, etc. 

Definition 3. The discrete well-ordered set W is discrete with respect to 
positions if, for any two elements a, b c W, there are at most finitely many 
positions between a and b. 

Clearly then, any finite p.o.s, is discrete with respect to positions. A 
further trivial example is Z, the integers, with the usual total ordering. Also, 
Z 2, with the Lorentz ordering, is discrete with respect to positions, since 
the only postions of Z 2 are the points themselves. But, interestingly enough, 
Z" is not discrete with respect to positions for all n > 2. Rather than proving 
this, I prove it for the following similar, but simpler, set. 

Example L Let W c  R 2 be defined as follows. Let A 6 R be an irrational 
number. Then 

W = { ( p ,  q)cR2:  q c Z  and p =  n+qA for n ~Z} 

W is to be given the Lorentz ordering inherited from R 2. 

To prove that this set is not discrete with respect to positions, I first 
prove: 

Lemma 3.6. Let a, b ~ R 2 be such that neither a -~ b nor b -< a. Then 
there exist points p and q in W (the set of  Example 1) such that p <- a, q -> b, 
but still p is not less than or equal to q. 

Proof We may assume, without loss of generality, that a = (0, 0) and 
b = (bl,  b2), where bl, b2 > 0 and b2 < bl. The problem is then to find two 
pairs of  integers (nl,  m~) and (n2, m2) representing the two points p = 
( m l + n l A  , nl) and q=(m2+n2A, n2) in W. We first find an appropriate q 
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and then look for p. That is, we search for an element q of W with q >-- b 
and yet q not greater than a. But this problem can be formulated as follows. 
Let e > 0 and no c N be given, and assume that h ~ R is irrational. Then the 
problem is to find an integer n2--no such that n2a - [ n 2 h ]  < e (where It]  is 
the largest integer less than or equal to t, for t ~ R), Note that in this case 

�9 we can take e = bl-b2.  Now it is well known that the numbers n h - [ n h ]  
for n > no and h irrational are dense in the interval [0, 1]. Therefore there 
must exist a solution to our problem, and we can take it to be q. But now 
we have the elements a, q ~ R 2 with neither a < q nor a > q, and the problem 
is to find an element p < a with p not less than q. This is essentially the 
same problem as before, but with the symbol < substituted for > ,  and thus 
a solution exists for the same reason. �9 

Now it is a simple matter to prove that the set W of Example 1 is not 
discrete with respect to positions. Let a, b c R 2 such that neither a < b nor 
a > b. Let Ca, Cb be positions in W such that C~ + c W a and CS c W~, and 
a similar condition holds for b, where W a and W~ are defined by W a =  
{we W: w>-a} and Wa={w6 W: w<_a}, respectively. Then Lemma 3.6 
implies that Ca ~ Cb. But if u, v ~ W are any two elements such that u < v, 
then there must be infinitely many point pairs in 112 satisfying the above 
condition, and thus W cannot be discrete with respect to positions. 

This example shows that even sets that are very much discrete can have 
a dense position structure. However, the sets in which we will be interested, 
namely the strongly discrete sets, are, in fact, discrete with respect to 
positions. 

Theorem 3. 7. Strongly discrete ~ discrete with respect to positions. 

Proof Let W be a partially ordered set, and let C~ and C2 be positions 
in W. Assume C7 = C2. But C~ is completely determined by C7, i = 1, 2, 
so therefore we must have C1 = (22. Thus, any position in W is determined 
by its lower cone. Now, assuming that W is strongly discrete, it follows 
that if a, b E W with a < b, then there are only finitely many possible lower 
cones between a and b, and therefore at most finitely many positions. �9 

It might be thought that if we leave the subject of  discrete spaces and 
return to the familiar framework of Euclidean spaces (with the Lorentz 
metric), then all positions have the familiar form Wan W a for some a ~ R n. 
That is to say, "positions" in R n are really just points of  R n, but formulated 
in an extravagant way. But this is by no means the case. In fact, there exist 
positions in R n that depart strongly from this structure. I give an example 
of this phenomenon here. 

Concentrate o n  R 3 (three dimensions are the minimum for such 
examples). Take the line segment L={( t ,  0, 0)ER3: t C [ - l ,  +1]}. Let C § 
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Fig. 3 

be the set of points in 1~ 3 that are above all points of L. Define C -  to be 
the set of all points in R 3 below at least one point of L (Figure 3). 

Example 2. C = C + u C -  is a position in R 3. 
To prove that C is a position, begin by noting that certainly C -  < C +. 

Assume that the point p c R 3 is above all points of C- .  In particular, p is 
above all points of L; therefore, by definition, p e C +. Now assume that  
q E R 3 is below all points of C +. Assume furthermore that q does not lie 
beneath any point of L. Let q = (ql, q2, q3). If  q3---0, then we could find a 
point in C +, of the form P = (0, +R, R + ~), for some (perhaps small) 6 > 0, 
and some sufficiently large R > 0, such that q is not less than P, thus 
contradicting the assumption that q < C +. Therefore, we assume that q3 < 0. 
Now, if we examine the hyperplane 

Hq = { ( X l ,  x 2 ,  13)  E 1~3. " x 3 = q3} 

then C -  n Hq consists of the union of the set of discs of radius q3 with 
centers on points of the form (t, 0, q3), t E [--1, +1]. In particular, this 
intersection is convex. Since q is not in the intersection, we can find a circle 
in Hq that has C -  c~ Hq in its interior and q outside the circle. Let the center 
of the circle be (v, w, q3) and let its radius be r. Then the point P =  (v, w, r) 
must be contained in C +, and yet q is not less than P. This is again a 
contradiction. �9 

3.7. Distances in Discrete,  Partial ly Ordered Sets  

It is now possible to formulate a definition of distances, using this idea 
of "positions.'" But before doing so, it is helpful to examine once again 
formula (14), describing Fokker's variational principle. The first term invol- 
ves the determination of path lengths along the particles, using the usual 
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Lorentz distances. That is, given two numbers tl < t2 in R, we are required 
to determine the Lorentz distance between Pl = 3/(/1) and P2 = 3'(t2) for a 
typical particle y ~ F. But here we certainly have Pl < P2, so that it is sufficient 
just to be able to determine Lorentz distances between arbitrary points 
a, b ~ R 4 with a < b. For clarity, let us call these distances of  the first kind. 
If  we turn now to the second term in (14), we again notice an integral over 
such distances, but the Dirac 6-function gives the integral an entirely 
different character to that of  the first term. In fact, the second term is really 
concerned with finding the advanced or retarded distances between two- 
points a r b in R 4, with the property that the Lorentz distance between a 
and b then vanishes. Let us call such advanced and retarded distances, 
distances o f  the second kind. It seems that these two different kinds of 
distances, which appear in Fokker's variational principle, must lead to 
two different definitions of  "distance" in the context of discrete, partially 
ordered sets. 

Let us begin with the distances of the first kind. 

Definition 1. Let W be a discrete, well-ordered set with particle struc- 
ture, which is also discrete with respect to positions. Let P c W be a particle, 
so that we can write P = {Pi : i ~ Z}, where Pi < Pj r i <j .  The particle P will 
be said to be proper r for all i,j ~ Z we have that the number of positions 
between pi and Pi+l is the same as the number of  positions between p~ and 
pj+l (i.e., this number is a constant associated with the particle P). 

Definition 2. Let W be as above. If  all particles in W are proper, then 
W will be called an admissible set. 

Do there exist admissible sets? Once again we have a number of 
standard trivial examples, such as Z itself. It is also not difficult to see that 
a discrete W, consisting of discrete vertical particles, constructed in a space 
of  the form K 3 •  R, where K 3 is compact, as in Section 3.2, must also be 
admissible. But nontrivial examples in R 4 seem to be difficult to find. 

What connection is there between the idea of proper discrete paths, 
and distances of the first kind, in R 49. Consider the following observation. 

Theorem 3.8. For a < b in R 4, define ~ab to be the standard Euclidean 
volume of the set W a n Wb c R 4. Furthermore, define dL(a, b) to be the 
Lorentz distance between a and b. If  p, q, p',  q' are four points in R 4 with 
p < q, p ' <  q', and dL(p, q) = dL(p', q'), then it follows that ~2pq =l)p,q,. 

Proof The fact that dL(p, q) = dL(p', q') implies that there must exist 
a Lorentz transformation that takes p to p '  and q to q'. But then the fact 
that f~pq = lip,q, can be deduced as a simple consequence of  Theorem 3.1. �9 

Thus, in R 4, it is possible to do away with distances of the first kind 
and instead, given two points a < b, one need only look at the Euclidean 
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volume of the set of points between a and b. This gives an equally good, 
relativistically invariant, conception of distances. A possible connection 
between these new Euclidean distances and the definition of proper discrete 
particles is described in the next section. 

Definition 1 is, at most, related to the distances of the first kind in R 4. 
What about the distances of the second kind? 

Definition 3. Let W be a discrete, partially ordered set with particle 
structure, and let P and Q be two distinct particles in W. Let P = {Pi: i ~ Z} 
and Q = {q~: j e Z}, as above. Given a specific point Pr on P, then the point 
qs on Q will be said to be diagonally above Pr if Pr < q~, but Pr is not less 
than qs-1. We also say that q~ lies on the light-cone above Pr. Similarly, pr 
is diagonally below q~, etc. 

Thus, distances of the second kind are only to be defined between pairs 
of points of W such that one of the points is diagonally above the other. 

Definition 4. Let p, q c W, with q diagonally above p in the set IV, 
which is strongly discrete and with particle structure. Then the retarded 
distance from p to q (and also the advanced distance from q to p) is the 
number of elements of W in the set Wq - Wp. 

3.8. Possible Relationships with the Usual Idea of Space-Time 

The basic assumption of this work is that it is possible to describe 
classical electrodynamics by means of a discrete geometrical framework. I 
have defined discrete, partially ordered sets with a proper particle structure 
that are discrete with respect to positions, and such sets will form the basis 
for my further reasoning. 

The picture I have in mind is that the particles that are observed in 
nature are discrete, and the union of all the particles is a discrete set W. 
The particles themselves--the points of real, physical material--are the 
points of W. But what about the points of empty space? These are, in the 
present picture, the positions of W. 

Now I would like to claim that it is possible to deduce the usual 
geometric properties of space-time purely in terms of the algebraic properties 
of W. Unfortunately I have been unable to succeed in this. Instead I have 
been forced make a number of rather vague assumptions of a geometric 
nature concerning the set W. What are these assumptions? 

The main assumption has already been encountered in Section 3.3. 
This is that there should exist a proper representation of the set W in R 4. 
But even this is not enough. To go further and justify all of  the definitions 
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in terms of the usual ideas of  physics, it will be necessary to assume that 
the elements of  W, and also the positions of  W, are more or less 
homogeneously distributed throughout R 4. Specifically, I will assume that 
a certain proper  representation of  W in R 4 is given, representing a certain 
embedding of  the points of  W in R 4 (each point u ~ W is mapped  onto the 
vertex of  the cone that represents u). Thus, W becomes a subset of  R 4. I 
will further assume that the cones in this proper  representation of W in R 4 
are, on the whole, nearly "straight" Lorentizian cones (or "s tandard light- 
cones" in the terminology of Section 3.3). 

Given such an embedding of W in R 4, then it is reasonable to go on 
and associate the positions of  W with points in R 4 as well. Thus, if C is a 
given position in W, then we will also think of  C as being associated with 
a point in R 4. This point is such that, according to the Lorentz ordering of 
R 4, some of  the points of  W are above it and some other points of  W are 
below it. Are these points just the elements of  C + and C -  in W? My 
assumption is that this i s - -a t  least very near ly- - the  case. Then, finally, I 
will assume that in the neighborhood of  any horizontal hyperplane H, in 
R 4 the points and positions of  W a re - -a t  least on a sufficiently large 
sca le- -homogeneous ly  distributed. 

Now all of  these assumptions,  while admittedly being of an arbitrary 
nature, are really nothing more than the simplest analogies to the assump- 
tions that cosmologists usually make. Therefore, I will loosely call all of  
these assumptions the cosmological hypothesis for W. 

Does there exist a partially ordered set W, with proper  particle structure, 
satisfying the cosmological hypothesis? This is certainly a difficult question 
to answer. On the other hand, if we are to base our cosmology on a space 
such as S 3 x R, as suggested in Section 3.2, then this question of existence 
reduces to a triviality. 

To return to R 4, it seems necessary at least to give some justification 
to the idea that the cosmological hypothesis can hold, and yet W can still 
be discrete with respect to positions. The following argument seems to be 
reasonable. 

Imagine some discrete set of  points W in R 4 satisfying the cosmological 
hypothesis, and which is also such that the "densi ty" of  W in R 4 increases 
exponentially with increasing "t ime." That is, given a small, rectangular 
box in R 4 of volume V located near the point (x, y, z, t), then the expected 
number  of  points of  W in V is ue ~t x V for some constants u and v. Is it 
reasonable to expect that such a W is strongly discrete? Consider two points 
p < q in W; for example,  p = (0, 0, 0, 0) and q = (0, 0, 0, 1). Let Apq = 

{x ~ R4: x - q, but x is not ---p}. Then for any of  the horizontal hyperplanes 
H, in R 4 with t < 0 we have Ht c~ Apq being the three-dimensional space 
between the 2-sphere of  radius t and the 2-sphere of  radius t + 1. The volume 
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of this space is 47r[(t + 1) 3 -  t3]. But then the expected number of points of 
W in @q below the hyperplane Ho, say, is given by 

cons t  x [ ( t + l ) 3 -  t 3] e-~'dt 

where the integral is taken from zero to +oo, and this is finite. 
Such an exponential increase in the density of points of W in R 4 could 

be expected to bring with it a corresponding exponential increase in the 
density of the positions of W in R 4. This can be seen by a symmetry argument: 
Let q':R4--> R 4 be the mapping that takes the point (x, y, z, t )~ R 4 to the 
point (kx, ky, kz, kt) for some constant k > 0 .  Then the density of the 
positions of ~ ( W )  in R a increases exponentially with time r the density 
of  the positions of W in R 4 increases exponentially with time. Another 
mapping is %t/1 :R  4"-> R 4, given by ~ ( ( x ,  y, z, t)) = (x, y, z, t - h), where h is 
some appropriate constant. This can be chosen so that ~1(W) has the same 
.expected density at a given point of R 4 as ~t)'(W). But since the positions 
of W are determined by the points of W, we conclude that the density of 
the positions at each hyperplane H, must be k times the density at the 
hyperplane Ht-h and thus this density of positions must increase exponen- 
tially as well. 

The corresponding increase, both in the density of points and of 
positions, is important, for it allows us to assert that the particles of W can 
be taken to be proper (see Definition 1 of Section 3.7). Thus, one sees that 
all of  the definitions that have been made up to this point are designed to 
apply to such a picture of a discrete set W embedded in R 4, with an 
exponentially increasing density in the direction of the fourth coordinate 
axis. This picture is also in accord with some standard models of the 
expanding universe. 

Now, it is interesting to note that one such model- - the  "steady-state 
universe"-- is  often criticized on the grounds that it requires the "spon- 
taneous creation" of energy and matter to fill the expanding voids of 
space-time. In the "big-bang universe" this creation is imagined to have 
occurred in an instant. But, if one is prepared to accept the philosophical 
proposition that the measure of "space" is in some way to be determined 
by the matter contained in it, then it becomes clear that this question of 
the "creat ion" of matter must be considered in a different light. Space-time, 
according to this picture, simply cannot be thought of as being an abstract 
entity, having nothing to do with the matter contained in it. On the contrary, 
matter determines its own density in space-time! Thus, there would no 
longer be a need for cosmologists to debate the mechanism of creat ion--  
whether it should be instantaneous or continuous. This picture will perhaps 
be made more acceptable if I note that particles, in the present view, are 
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not unchanging entities, whose mass and charge is independent of  space- 
time. As will be seen in the next section, these quantities can be thought 
of as being determined by the local properties of space-time--that is, the 
positions of  the underlying discrete set. 

One point deserves further attention. I have asserted that the integral 

const x [ ( t+  1) 3 - t 3] e -v' dt 

taken from 0 to +00, is finite. But then the corresponding integral 

O -~ t 3 e -vt dt 

is surely also finite, which means that the expected number of points of  W 
below, say, p = (0, 0, 0, 0) �9 R 4 is also finite. This conflicts with the assump- 
tion that W is to consist of  proper  particles! However, this objection can 
be countered by observing that the requirement that W consist of  proper  
panicles implies a very special property of the fourth coordinate axis in R 4 
with respect to this embedding of W: namely, all standard light-cones must 
contain infinitely many points. On the other hand, the sets of the form Apq 
do not share this property; they can only meet proper  panicles along finite 
intervals. 

The objection could also be countered with two further arguments. 
First, I expect that a better model would be found by getting away from 
the idea of  proper  particles and allowing instead panicle creation and 
annihilation and vacuum loops, as in the theory of quantum electrody- 
namics. But the simplest way to counter the objection is to note that I expect 
that it will prove to be best to adopt Segal's ideas and base cosmology not 
on R 4, but rather on a space such as S3x R. 

3.9. A Discrete Formulation of Fokker's Theory 

It remains to translate formula (14) into the terminology of  discrete, 
partially ordered sets. For this purpose, change the formula to 

Z Z F(p. ,  Q)[D+(p., Q)-1+ D_(p., Q)-I ]  (47) 
P, Q e ~  n~ Z  
PncP 

where ~ is the set of  all particles in W, F(p. ,  Q) is some function defined 
on the set of  all pairs Q e  ~, and p. e P; D• Q) is defined as follows. 
In case p. r Q, we define D_(p., Q) to be the retarded distance from p. to 
Q according to Definition 4 of  Section 3.7, and D+(p., Q) to be the advanced 
distance from Q to p,. In case p, e Q, we define D~:(p,, Q)=D(Q) ,  a 
constant independent of  the particular point on Q which is chosen. 
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To what extent can one claim that (47) is equivalent to the usual 
formulation (14)? To begin with, one can assert that if the ideas of Section 
3.8 are accepted, then the distances D• Q) will correspond with the 
usual advanced and retarded distances of classical electrodynamics. For, 
let Pn and qm, say, be points such that qm is diagonally above p~, both in 
W and in R 4. Assume that Pn = P  = (0, 0, 0, 0) and qm = q = (t, 0, 0, t). Then, 
for horizontal hyperplanes of the form Hr ,  T < 0, the se t  Apq ~ H T is the 
three-dimensional space between a 2-sphere of radius T and a 2-sphere of 
radius T +  t. Now, if we assume that T is very much greater than t, then 
this is proportional to t, i.e., the retarded distance. 

How is this assumption that T is much larger than t to be interpreted? 
The idea is that the interaction terms of Fokker's theory are to describe 
local electromagnetic interactions, the word "local" being interpreted in 
the sense of cosmology. Thus, t is "small." On the other hand, most of the 
points of W in Apq a r e  "cosmologically distant." 

Our variational principle now becomes the assertion that we will only 
consider sets W with the property that (47), evaluated on W, is an extremum 
with respect to "local" variations in the sense of Section 2. 

Given that the density of positions of W in R 4 varies slowly with 
t ime--again on a cosmological scale--then Theorem 3.8 implies that the 
process of counting points along the particles in the discrete theory is the 
same as taking an integral along the path length, as in the Fokker theory. 
In this way the summations in (47) can be seen to correspond with the 
integrals in (14). But of course this correspondence is very much determined 
by the local density of positions of W in R 4. If  this density is great, then 
the measure of path length becomes correspondingly shorter, and thus, 
carrying through the analogy between (47) and (14), the masses of the 
particles can be considered to become correspondingly greater. 

Now it is also true that the velocities of  the particles are important in 
(14), since the expression y'r is used there. I simply imagine this product 
of the velocities to be expressed in (47) in some way within the term 
F(pn, Q). Perhaps the reader may feel that it would be better to look for 
a specific analog to ~/'r directly in terms of the ordering structure of W 
and not to suppress the necessary definition as I am doing. It is possible 
to choose such an analog, but for the further development the precise form 
it is given will play no essential role. Thus, rather than burdening the 
development with further arbitrary choices, I prefer to leave this question 
open. 

At this stage, then, the description of a discrete partially ordered set 
W for use in classical electrodynamics is complete. The fact that the set W 
itself has only been incompletely described and that many questions have 
been left open are things it shares in common with other descriptions of 
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classical electrodynamics. The fact that at many points the description could 
be altered to obtain other, perhaps more appropriate, discrete geometries 
should be self-evident. 

It would of  course be possible to go on and prove further results of 
an abstract nature concerning the theory of discrete, partially ordered sets. 
But surely the most important task is to try to justify the assertion that such 
discrete sets do indeed have a place in physics. Now the study of  physics 
is Concerned with the description and explanation of physical experiments. 
But I have not as yet given any new explanations. On the contrary, my goal 
has been to find an alternate, but equivalent, geometric framework for 
Fokker's theory of classical electrodynamics. 

This is not to say, however, that Fokker's theory provides a satisfactory 
and complete description of  all possible experiments to be observed in the 
physical world. Far from it. Almost all aspects of  modern physics, from 
gravitation, to quantum mechanics, to elementary particle physics, simply 
have no place in the Fokker theory. Thus, one is prompted to look for 
possible connections between the present discrete theory and these other 
branches of physics as well. 

4. A POSSIBLE CONNECTION WITH THE THEORY OF 
GRAVITY 

4.1. Discrete versus Differentiable Structures 

One of the most fundamental premises of modern physics is the idea 
that gravity is a purely geometrical phenomenon. My goal is the development 
of  a discrete geometry for use in theoretical physics, and thus the question 
naturally arises as to whether such discrete geometries can be made to be 
compatible with the theory of gravity. 

Now it is certainly impossible to establish a complete correspondence 
between the usual theory of gravity--the general theory of relativity--and 
some discrete theory one might wish to set in its place. The fact is that the 
general theory of relativity is concerned with the behavior of differential 
manifolds. Much research has recently gone into the subject of possible 
"singularities" in these manifolds and the question of  whether or not such 
singularities can have physical relevance. But how can the idea of a singular- 
ity in space-time be translated into the framework of discrete spaces? It 
seems obvious that such singularities result from the use of differential 
equations, describing manifold structures, which are, by definition, 
arbitrarily fine. What possible meaning could be given to the idea of  a 
"singularity" in a discrete, partially ordered set? Thus, one is forced to 
assume, as a working hypothesis--and in common with Einstein (1956, 
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General Remark B)-- that  it is possible to describe gravity without making 
use of singularities in differential manifolds. 

However, a still greater obstacle is the fact that the theory of gravity--in 
contrast to classical electrodynamics--is a nonlinear theory. Thus, there can 
exist no simple action-at-a-distance formulation of the theory of gravity in 
the style of Fokker's theory of classical electrodynamics; it is not possible 
to simply examine all the different pairs of particles in our set F and then 
sum up the effects due to each pair, as was done in the classical theory. 
Instead, some more subtle, collective phenomenon must be found. 

This is surely a great problem. After all, the present discrete formulation 
of classical electrodynamics was only made possible by means of Fokker's 
action at a distance theory. 

But perhaps one can proceed in a more unconventional direction. In 
the present  view physical material determines the structure of space-time. 
This is also true of general relativity; but the discrete theory can be thought 
of as providing a more direct mechanism for describing this relationship of 
physical material to space-time: the space of positions, which determines 
the metrical properties of space-time according to the present theory, is 
defined directly in' terms of the particles. Thus, it might be possible simply 
to take the discrete framework as described in Section 3 and investigate the 
question of whether or not a gravitational theory is already present within 
the original framework. This would surely be a great advance, for then it 
would be possible to view gravitation as a phenomenon that arises naturally 
in connection with the phenomenon of electromagnetism. 

Such a goal would certainly be most ambitious. Even if such a theory 
could be established, the fact is that, for the reasons outlined above, it 
would of necessity depart from the usual gravitational theory. Furthermore 
this usual gravitational theory has itself been extended and newly interpreted 
in ways that depart strongly from Einstein's original conceptions. 

I will begin with a short sketch of some of the standard results of the 
general theory of  relativity. 

4.2. The Gravitational Equations 

The general theory of relativity has as its main hypothesis the assump- 
tion that space-time can be represented as a four-dimensional pseudo- 
Riemannian differential manifold. The metric tensor g has signature (3,1). 
The Riemann curvature tensor in a given local coordinate system has the 
components Rig l. L e t  R j k  = R~ki, where the usual summation convention 
(one sums over the index i from I to 4) is being used. Rjk a r e  the components 
of the Ricci tensor. The scalar curvature R is given by R = gjkRjk , where 
the summation is here to be taken over both the indices j and k. Finally, 
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the Einstein tensor is defined to be Gjk = Rjk--gjkR/2. The gravitational 
equations for empty space are now taken to be 

Gjk = 0 (48) 

In case the space is not empty, one takes the energy-momentum tensor Tjk 
and equates it, multiplied by a constant, with the Einstein tensor, i.e., 

Gjk = -8"n'GTjk (49) 

where G is the Newtonian gravitational constant. These are Einstein's 
equations of  gravity. It is a standard result that the divergence of the Einstein 
tensor vanishes identically, G~ k = 0  (the semicolon indicates covariant 
differentiation, and again one is to take the sum over k from 1 to 4). The 
divergence of the energy-momentum tensor must then vanish as well. This 
is the law of conservation of energy-momentum. 

The energy-momentum tensor is usually taken to be 

TJk = pmIJJvk +~-~ ( FJ Fmk-~ gjkF4nFm'~ ) (50) 

Here Fjk is the electromagnetic tensor defined in Section 2. I am assuming, 
as there, that the units of  measurement  have been so chosen that the speed 
of  light is 1. The tensor describes a dustlike fluid of  massive material whose 
density is given by the scalar field pm and whose velocity is the four- 
dimensional vector field v. For the purposes of  astronomical observations, 
it is usually assumed that the electromagnetic field is negligible, so that Fjk 
is taken to be zero, and we obtain 

T jk = pray Jr k (51) 

The philosophical considerations that led to all of  these choices, and 
the standard techniques for dealing with the theory, are described in innu- 
merable textbooks. See, e.g., Narlikar (1978) and Yilmaz (1965). Einstein 
(1956) also gave a very succinct and readable account. 

4.3. The Schwarzschi ld Solut ion  

The gravitational equations (49) are, in general, difficult to solve, so 
that only a very few exact solutions are known. In empty space we have 
the equation (48), which clearly has as a trivial solution flat Minkowski 
space (i.e., R 4, with the Lorentz metr ic) - - tha t  is, the Riemann tensor 
vanishes. There is also a class of  solutions involving "gravitational waves" 
in empty space. (Although a number  of  experiments have been in progress 
for many years with the aim of detecting such waves, it is apparently safe 
to say that gravitational waves have still not been observed, and thus I shall 
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not pursue this question further.) Perhaps the simplest known, nontrivial 
solution is the Schwarzschild solution. 

The Schwarzschild solution is concerned with the case of  a stationary, 
spherically symmetric mass of  material without electrical charge. It may be 
imagined that the material is centered on the point (0, 0, 0 ) c  R 3 and that 
beyond a certain radius, space and time are empty. (In particular, the 
universe is assumed to be empty, except for this one material object.) Now 
we are really only looking for a solution in empty space, outside the object. 
Here the energy-momentum tensor must vanish, so that we need only search 
for some spherically symmetric solution to the gravitational equations for 
empty space (48) on the s e t  ( R  3 -  BR)•  R say, where BR is a ball of  radius 
R, centered at (0, 0, 0), containing the massive, gravitating object. The 
question of extending the solution through the interior of  BR will be put 
off for now and relegated to the sequel. 

I f  we use the standard notation ds 2 = go dxi dxJ, then we can write the 
Schwarzschild solution as 

ds2= ( 1 - 2 m / r )  r2(dOZWsin2Od~o2)+ 1 - - -  dt 2 (52) 

Note that we are using spherical coordinates (r, O, q~) for R 3 and the fourth 
coordinate (time) is denoted by t. Here " m "  is the total mass of  the 
spherically symmetric, massive object centered on (0, 0, 0). I f  m is 0, then 
the Schwarzschild solution degenerates to the trivially flat empty-space 
solution. The more usual situation is that the mass is nonzero, so that m > 0. 
The verification that (52) is in fact a solution to (48) can be found in almost 
every book on the theory of gravitation. 

Now the solution (52) serves to represent the metric tensor in terms 
of a single coordinate neighborhood. Difficulties arise with this strategy 
when r = 2m, the so-called "Schwarzschild radius." Thus, if the ball BR has 
radius -<2m, then it will become necessary to build up the differential 
structure in terms of a finer set of  coordinate neighborhoods in the region 
near the point (0, 0, 0), as is usual in differential geometry. But, for example, 
in the case of  the sun, the Schwarzschild radius is approximately 2.7 kin. 
On the other hand, the actual radius of  the sun is much greater, about 
70,000 km, so that, at least in this case, the solution (52) is valid through 
out R 3 - BR. 

It will be convenient for later purposes to express (52) in terms of a 
slightly different coordinate system: the so-called "isotropic coordinate 
system." Let p = (r, O, ~, t) ~ R 4. Then in the isotropic coordinate system we 
can write p = (r~, O, q~, t), where 

r = r#(1 + m / 2 r # )  2 (53) 
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This coordinate t ransformation is certainly well defined throughout R 3 - BR 
for R > 2m. It is a simple exercise to verify that 

2m ( 1 - m / 2 r # )  2 
1 - - -  = ( 5 4 )  

r (1 + r n / 2 r ~ )  2 

Thus, substituting r# for r in (52), we obtain 

d s  z = - A [  d r  2 + r 2 ( d O  2 + sin 2 z9 dq~2)] + B d t  2 (55) 

where 

m )4 (1 -- m / 2 r # )  2 

A =  l+~-r-r#r~ ' B -  (1 + m / 2 r # )  2 

The isotropic form (55) is convenient, due to the fact that the three- 
dimensional volume element dr  2 + r2(dO2+sin  2 O d~ 2) is similar to the 
usual expression for the Euclidean volume in R 3 expressed in polar  coor- 
dinates. 

At this stage one would like to emulate the development  in Section 2.2 
and consider that the spherically symmetric gravitating mass centered at 
(0, 0, 0) should shrink down to a point, leading perhaps to a generalized 
function, and then on to a generalized field theory, as was done by Dirac 
in the case of  classical electrodynamics. But this will not do! We are no 
longer dealing with fields defined on a g i v e n  space. On the contrary, the 
metrical structure is a fixed property of  that space, and thus each different 
solution to the gravitational equations defines a d i f f e ren t  space. I have 
assumed that the space is such that the metric tensor has the form given 
by (52) in ( R  3 -  BR)• R. It is possible to continue this solution smoothly 
across the ball BR, thus giving a - - m o r e  or less--realistic space, say for a 
star of  radius R. Taking the limit as R + 0 amounts to finding a certain 
incomplete differential manifold [see, for example,  Hawking and Ellis 
(1973) for a more detailed treatment of  these ideas], which has been 
described as a "black hole." 

Now it is important  to remember  that the conventional energy- 
momentum tensor (50) describes a diffuse, fluidlike substance, in accordance 
with the ways of thinking of some physicists in the 19th century. On the 
other hand, the idea of pointlike, "a tomic"  particles leads as we have seen, 
to the idea of matter in terms of black holes. Thus, the simple classical 
picture suddenly changes! Instead of imagining conventional particles mov- 
ing sensibly through a smooth space-time, we are now confronted with the 
idea of an empty space-time punctuated with countless tiny "black h o l e s " - -  
or "s ingular i t ies"--which are to be interpreted in some way as "particles." 
In particular, the energy-momentum tensor, at least in its form (51), vanishes 
everywhere where the space-time differential manifold is well defined! Such 
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drastic consequences led Einstein to the conclusion that the theory can only 
be considered valid as long as these "singularities" can be excluded. 

4.4.  P a r t i c l e  M o t i o n  in a G r a v i t a t i o n a l  F ie ld  

The law of conservation of energy-momentum mentioned in Section 
4.2 implies that a flow of  electrically neutral, diffuse matter tends to follow 
straight lines, i.e., geodesics, through the manifold. Now this result ties in 
well with our use of the Fokker theory of classical electrodynamics. Given 
some particle y c F with vanishing electrical charge, the interaction terms 
in (14) involving y vanish, and we are left with a single integral involving 
the path length of 3,. Fokker's principle reduces then to the assertion that 
the path length is an extremal with respect to local variations. This is 
precisely the assertion that 3' should describe a geodesic. Thus, according 
to this way of  thinking, Fokker's theory seems to be completely in harmony 
with the general theory of relativity; it is only necessary to generalize 
Fokker's theory to the extent of allowing its validity also in the context of 
curved space-time manifolds. 

Unfortunately, this way of going about things ignores the most basic 
premises of the theory of  general relativity! To begin with, we have seen 
that a pointlike particle can only be represented as a "black hole" in the 
theory, and therefore the space-time manifold does not even exist at 
the particle! Indeed, the "particle" is nothing more than a "hole"  in the 
manifold, so it must be nonsense even to consider geodesics in this case. 
Physicsts traditionally avoid this difficulty by speaking about the motions 
of so-called "test particles." 

Now, a test particle is taken to be an object with a sufficiently small 
mass so as not to effect the general gravitational fields through which it 
moves. Given that it is meaningful to consider such entities, then the geodesic 
hypothesis might indeed be sensible. But if, on the other hand, one is willing 
to consider the "test particle" as being a massive--albeit small, diffuse, and 
fluidlike--object, then (1) being diffuse, the test particle will not be a black 
hole, but (2) being massive, it will alter the space-time manifold, and thus 
it is no longer a "test particle" whose motion can be calculated within some 
fixed space, such as that of the Schwarzschild solution. 

One arrives then at the idea that particle motion is only defined in 
terms of a given space-time manifold, but the space-time manifold is itself 
determined by the particles contained within it. This connection between 
"motion"  and "curvature" leads to the thought that perhaps it is improper 
to simply postulate that particles should follow geodesics. Perhaps the 
particle motion is really determined by the gravitational equations (49) 
themselves. Einstein and Grommer (1927) followed this line of reasoning. 
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To what extent is it reasonable to calculate particle motion as the limit 
of  the motion of diffuse, fluidlike balls of  massive material whose radius 
tends to zero ? This is undoubtedly an interesting, but perhaps too theoretical 
question. In the end, one simply obtains the expected result that "test 
particles" do follow geodesics in the space-time manifold. 

4.5. The Advance of the Perihelion of Mercury 

Surely the most f a m o u s - - a n d  historically the most important---calcula- 
tion of motion in a gravitational field concerns the orbit of  the planet 
Mercury. The calculation is interesting in itself, and it leads to a number  
of  results that will be important  for the further development,  so I will 
reproduce it here. I will follow, for the most part, the exposition in Yilmaz 
(1965). 

The calculation is based on the assumption that, at least in the regions 
where Mercury is to be found, the gravitational field of  the sun can be 
represented by the Schwarzschild solution. Furthermore, Mercury is con- 
sidered to be a "test particle" which does not perturb the sun's gravitational 
field. Now of course this is a grave departure from reality, but still, as we 
will see, it d o e s  lead to a reasonable result. There is also a more compelling 
circumstance which forces us to view Mercury as a "test particle": the fact 
is that the two-body problem, within the general theory of  relativity, has 
not been solved! 

I will use the Schwarzschild metric expressed in terms of isotropic 
coordinates (55). The radial coordinate was denoted by the symbol r# there, 
with r being reserved for the expression (52). However, at the risk of  a 
slight confusion, from now on I use the more usual r, rather than r~, in (55). 

The problem is to describe the geodesics in a given pseudo-Riemannian 
manifold whose metric satisfies (55). Let us call this manifold M 4. Let 
3' : R ~ M 4 be a smooth path through the manifold. I will assume that 3' is 
timelike, in the sense that the square of  the velocity of  3' is positive, i.e., 

13',12 = _ 3 ' ; 2  3"&=_ 3"&=> 0 

where 3'[ is the ith component  of  the velocity of  3, for i = 1 , . . . ,  4 for each 
point on 3'. It is possible to assume that 3' is parametrized by means of the 
proper-t ime parameterization, so that in fact 13"1 = 1 everywhere. 

Returning now to the Schwarzschild metric (55), it will prove to be 
convenient to express it in the form 

d s  2 = e - 2~' d t  2 - e 2/3 (dr2+ r 2 d ,O 2 d- r 2 sin 2 O dq~ 2) (56) 

where c~ and /3 are suitable functions of  r (I assume, of  course, that the 
mass of  the sun remains constant). 
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Everything has spherical  symmetry ,  so it is cons idered  sensible to 
restrict one ' s  search for  geodesics to paths  confined to the p lane  defined 
by  O = ~-/2, and thus one can take 

ds 2 = e -2~ dt 2 - e2~(dr2 + r 2 d~o 2) (57) 

or, expressed slightly differently, 

1 = e-2~t ' 2 -  e2/~(r'2q - r2~ '2) (58) 

where,  for  example ,  t ' =  d t / d s  = dy4(s) /ds ,  and so forth. 
Let us now take a variat ion,  say be tween the points  7 ( t 0  and T(t2), 

where tl < t2. The length of  the pa th  is given by 

I d s = f [ e - 2 ~ t ' a - e 2 ~ ( r ' 2 + r 2 ~ ' 2 ) ] d s  (59) 

and so the Euler  equat ions  cor responding  to this variat ional  p rob lem can 
be immedia te ly  writ ten down [these are equat ions (17.27) in Yi lmaz (1965)]: 

r " + / 3 ' r  '2 - ( r +  r2/3')q~ '2 - e-2~-2t%e't '2 = 0 

~"+ 2 ( 1 / r +  f l ' )~ ' r '=O (60) 

t " -2cc ' t ' r '=O 

(note that  a and fl are funct ions of  r, and so a ' =  d a / d r  and f l ' =  dE~dr). 
The second and third equat ions  in (60) can be solved, to give 

~o'= he-2t~/r2, t '= ke 2~ (61) 

Here  h and  k are constants ,  which are de te rmined  by the bounda ry  condi-  
t ions at 7( t l )  and 7(t2) in (59). Substituting (61) into (57) yields 

r 4 

d~]  + r =~-7 ( k2 e2~ - 1) e2~ (62) 

The fact that  a and /3  are functions of  r makes  equat ion (62) difficult 
to solve. The  s tandard  procedure  at this point  is to linearize things by taking 
the Taylor  series 

2m 2m 2 2m 3m 2 
e2~ = 1 +- -7-+--7W+" �9 �9 e2t3 = 1 + - 7 - + - ~ r 2  +"  �9 �9 (63) 

I f  r is much  bigger than 2 m - - w h i c h  is certainly the case when it comes to 
the pa th  o f  Mercury  abou t  the s u n - - t h e n  the error in restricting one ' s  
at tent ion to the first three terms is small. We also have the slightly coarser  
app rox ima t ion  e 2~ ~ 1. In addit ion,  a further  approx ima t ion  is used. Since 
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Mercury has a velocity much less than that of  light, we can take t'~-1. 
Combining these approximations, therefore, we obtain k ~ 1. All of this 
gives to second order, the equation 

(dr~ 2+ra=r__~h2(2m+6m2 ~ 
d~oJ \ r r 2 I (64) 

Next, Yilmaz substitutes u = 1/r  and differentiates with respect to q~, 
obtaining 

d2u /  dq~2 + K 2 = m /  h 2 (65) 

Here K is taken to be the constant K = (1 -6m2/h2)  1/2. Equation (65) has 
the solution 

u = (m/hZ)[1  + e cos(K~)] (66) 

Once again, e is a constant, which is determined by the initial conditions. 
If K = 1, then this is the equation of an ellipse (a circle if e = 0). More 
generally, it is an ellipse with precession, and it turns out that if the 
appropriate numbers are substituted for Mercury and the sun, then the 
magnitude of the precession amounts to 43 see of arc per century. 

It is interesting to note that the actual precession of Mercury is over 
ten times this amount! Almost all of  this can be accounted for by first-order 
Newtonian approximations involving the motions of the other planets. These 
observations and calculations of the orbit of  Mercury must surely represent 
one of the most precise physical measurements ever made. The effect is so 
fine that some theorists have attempted to find different gravitational theories 
that differ from the standard theory in the sense that they are based on 
gravitational equations similar to, but slightly different from, (49) (e.g., 
Dicke, 1964). Such theories often predict slightly different values for the 
precession of  Mercury, and this has led to debates concerning such 
extraneous factors as the oblateness of the interior of the sun and so forth. 
However, recently the double pulsar system PSR 1913 + 16 has been investi- 
gated and it has been found that when the calculation is applied, a much 
greater value for m / r  (and hence for K) should be chosen. It appears 
that--subject  to the usual uncertainties that must always surround the 
observation of  such distant objects--the standard theory continues to hold. 

4.6. An Unusual Interpretation of the Preceding Calculation 

Having derived equation (66) for the orbit of Mercury, Yilmaz makes 
the following observation. When dealing with the classical Newtonian 
gravitational theory, one may consider the field ~ ( r ) =  m/r ,  the potential 
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field in the neighborhood of  the sun. Let us now simply write 

ds 2 = e - 2~ dt 2 -  e2~ ( dr2 + r 2 dO2+ r 2 sin 2 0 dO 2) (67) 

A glance at (63) shows that, at least as far as the first few terms are concerned, 
this agrees with the Schwarzschild metric. In fact, it turns out that the 
agreement goes so far as to give the same value for the advance of the 
perihelion of  Mercury. Of course, the standard first-order effects--the agree- 
ment with the Newtonian theory, the bending of light rays, etc.--would be 
the same for a space satisfying the metric (67) and for one satisfying the 
"exact"  Schwarzschild solution. 

Would it be possible to base a new theory of gravity on equation (67)? 
This would surely be somewhat far-fetched. After all, (67) only describes 
an approximation to the usual theory in the case of a single, slowly moving, 
spherically symmetric object. Even the most basic question of how it could 
be possible to define a relativist ically invar iant  theory on the basis of (67) 
remains unanswered. 

On the other hand, it is true that there have never been any truly reliable 
observations of the grativational fields of swiftly moving or non-spherically 
symmetric objects. The fact is that gravity can be thought of as being an 
extremely weak "force" and thus, in practice, all direct experiments that 
can be performed concerning the gravitational effect involve a very small 
value for m / r .  (The interpretation of the astronomical observations of 
cosmologically distant objects, in which larger values of m / r  may play a 
role, must always involve great uncertainties.) 

I will therefore proceed by accepting (67) in the following light. It 
seems possible to say that any theory of gravity capable of explaining the 
most well-established empirical observations must, as a first approximation, 
agree with (67). Thus, if one can produce a theory that, in the case of slowly 
moving, spherical objects, is similar in form to (67), then it is reasonable 
to claim that it is also in agreement with experiment. 

4.7. Determining the Geometry of Discrete Sets 

In this section I will describe a method for determining the geometrical 
properties of discrete, partially ordered sets that satisfy the cosmological 
hypothesis as described in Section 3.8. According to the definition given 
there, the discrete set W satisfies the cosmological hypothesis if there exists 
an embedding of W in R 4 that is nearly order-preserving (R 4 is, as always, 
considered to have the Lorentz ordering). Furthermore, it is assumed that 
there is also a nearly order-preserving mapping of the set of posi t ions of W 
in R 4 (see Section 3.6). Thus, it can be imagined that W and the positions 
of W are really just discrete, ordered subsets of R 4. Following the reasoning 
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in Section 3.8, one can assume that the metrical properties of W---as far 
as they were defined and used in the description of the formula (47)--are 
given, at least locally and approximately, by the usual Lorentz metric in 
R 4. Imagine that the set of positions of W, as a subset of R 4, corresponds 
with the idea of points in "empty space" in the usual picture of space-time. 
The points of W are thought of as representing material particles traveling 
t h r o u g h  R 4. 

To continue with the analogy, imagine that the set of positions, although 
being discrete, is extremely dense in R 4 when compared with the points of 
W. If, as is often said, there are perhaps 1080 particles to be seen in the 
observable universe, then, upon thinking about our definition of a "posit ion" 
in W, it seems reasonable to assert that the density of positions in R 4 should 
be something like 1080 times as great as the density of  the points of W in 
R 4. Furthermore, since most matter in the observable universe is cosmologi- 
cally distant, one expects the local density of  positions to be nearly constant, 
varying little with the local density of the points of W. 

Given all of these assumptions, I will then go on to argue in the 
following manner. To begin with, we can think about how the conventional 
theory of gravity--as a purely practical matter--is used in the calculation 
of the paths of material objects. It is surely so that the practicing physicist 
begins by considering empty space--using the single, canonical coordinate 
neighborhood for R4--and then thinks of  altering or perturbing the fiat 
space, Lorentz metric by adding in material objects. These perturbations 
generally involve just the first one or two terms in the Schwarzschild solution. 
One ends up then with an approximate solution to the equations of  general 
relativity, which is usually sufficiently good to account for all possible 
observations. 

Now, the present idea is to proceed in a similar manner with the 
analysis of our discrete set W. Let us begin by imagining an "empty"  space, 
as in the case of the conventional theory. What is an empty space in our 
framework? Obviously, it would be false to simply take W = •. If W were 
empty, then there could be no positions, and thus no "empty space," 
according to our assumptions! The best one can do is to take a region of 
R 4 (considered together with the embedding of  the points and positions of 
W) that contains few points of W and yet has a dense and homogeneous 
set of positions. Thus, this region of R 4 corresponds with the idea of  a 
region of space-time, say, in some distant interstellar space. Then, continuing 
with the analogy, one adds in particles to W one by one in this region. 

As the particles are added in, one will expect that, automatically, 
positions will also be added in to W, and thus in to R 4. After all, positions 
are defined in terms of the points of W: If there are no points, then there 
will be no positions. If there are many points, then there will be many 
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positions. Hence, one expects that, in some way, adding in particles to an 
existing W will tend to generate new positions, and we will be interested 
in the density and distribution (in R 4) of the set of these new positions in W. 

But then, having added new particles into W, and without changing 
W in any other way, one will suddenly find that the original particles of 
W are no longer proper (Definition 2 of Section 3.7). Thus, to "restore" 
the property of regularity (so to speak), it will be necessary to alter the 
metrical structure of W--represented by an alteration of the metrical struc- 
ture of R 4, as is usually done in practical calculations involving the general 
theory of relativity. 

All this is admittedly vague. A more acceptable procedure would be 
to deal with a given discrete set W as a fixed entity fulfilling all of the 
assumptions in Section 3. Unfortunately, one has no practical methods for 
the exact analysis of such sets, just as the theoretical physicist has no exact 
method for dealing with the n-body problem in the theory of general 
relativity. 

4.8. How Points Generate Positions in Finite Sets 

Let W be a finite, partially ordered set with, say n elements. If w 
happens to be empty, then, as already noted, the set of positions of W is 
also empty. On the other hand, if W is nonempty, then, remembering 
Theorem 3.5, we have that the set of positions of W must also be nonempty. 
In this section imagine that the elements of W are numbered from 1 to n, 
so that we can write W = { t o ~ , . . . ,  ton}. Then, for each i e { 1 , . . . ,  n}, let 
W~ = {Wl . . . .  , toi}. For completeness, let Wo = O as well. 

Now, as far as these sets are concerned, we clearly have W~_ 1 c W~ for 
all relevant i. But what about the positions? Does it make sense to say that 
the set of positions of W~_I is contained in the set of positions of W,.? 
Consider the following ideas. 

To begin with, W0 = •, and the set of positions of W0 is empty. One 
has W~ = {tOl}, and the set of positions of Wa consists of just the element 
Wl. In general we expect that W~+~ contains more positions than W~, for, 
let, say, C1 and C: be two different positions in W~. Then C~ and C2 are 
also subsets of W~+1, and we certainly have Cj--< C~- in W~+I for j = 1, 2. 
Perhaps C: is maximal (see the definition in Section 3.6) and is thus already 
a position in W~+I. If C: is not maximal, then (since W~+~- W~ consists of 
the single point wi+~), it can be made maximal by adding in the element 
wi+~ either to C i or to C~-. Thus, in either case we obtain a unique position 
Dj in W~+~, which contains Cj, for j = 1, 2. Furthermore, since W~+~- W~ 
consists of a single point, we must have either D + = C~ or D~-= C~- for 
both j =  1, 2. Thus, certainly D1 ~ D2. Letting ~(W~) denote the set of 
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positions of W~, we obtain then a natural mapping r  ~(W~+~), 
which is monomorphic.  

Now it is reasonable to say that a partially ordered set with many 
elements contains many positions. Thus, it is obvious that, in general, the 
set Xi+ 1 = ~(W/+l) - ~ i (~ i~(W/) )  is not empty. We will say that the positions 
in X~+a are associated with the element wi+~. Of course this a rather labile 
association: it depends on the way we count the elements of  W. But still, 
such positions can be thought of as being closely related to Wi+a within the 
"geometry" of W. It is also interesting to note that if the set 

C = {u ~ W:  u <,o~+~} u {u ~ W:  u > ,o~+~} 

happens to be a position in W~, then, according to this definition, the position 

D = { u c  W: U~O)i+I)U{UE W: u~'oJi+l) 

in W/+ 1 is not associated with toi+l! 
What can be said about the positions associated with a given element 

toi ~ W? Let the position C be associated with to~. Can it be that to~+~ C? 
If  this were true, then C would be a position in both W~ and W~+I. Thus, 
C would be contained in r162 a contradiction. We must conclude 
that C is either above or below W~+l. 

Furthermore, C is on the "edge" of either the cone of points above or 
below wi+l in the following sense. Let Cl, c 2 E C be such that c 1 <~ (.oi+ 1 < C 2 . 
Then c~ c C -  and c2 c C +. For, if we assume, say, that both Cl and c2 are 
contained in C +, then we would have D = C-{Wi+l} being a position in 
W~. This can be seen by noting that if D were not maximal, then there 
would exist an element, say u E W~, with u r D, and either u > D -  or u < D +. 
But u > D -  is impossible, since D -  = C- .  The other case, u < D +, is also 
impossible, since we would have in particular that u < c~, and thus u < w~+~. 
But then it would follow that u < C +, so that u ~ C -  = D -  c D. 

Thus, this idea of  the "edge" of a position can be given both a geometric 
and an algebraic meaning. The geometric idea is clear: we think of positions 
as being "light-cones," i.e., double cones in R 4, and the edge of such a cone 
is its topological boundary. The algebraic idea is expressed in the above 
paragraph: we can imagine it by saying that an element u ~ W is on the 
edge of the cone C in W if there are no other elements of W between u 
and the "vertex" of C. 

4.9. Positions in Infinite Sets 

If  the partially ordered set W is infinite, then the ideas of the last 
section can no longer be applied. It is not possible to construct W by 
successively adding in new elements one after another, as was done there. 
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On the other hand, if  W is strongly discrete, then it is possible to investigate 
finite regions of  W, using the methods of Section 4.8. 

Specifically, let us take two points p, q ~ W with p < q. That W is 
strongly discrete implies that there are at most finitely malay elements of  W 
in the s e t  Apq = {U ~ W: u ~ q, but not u <p}.  Let us say that there are n 
elements of  W in Apq. We can write Apq = { to l ,  --  - ,  tOn} and then consider 
the sequence of partially ordered sets Wn_~ = W ~- {tO1 . . . .  , w,}. In particular, 
Wo = W - A p q ,  W, = W, and W~c W~+I, for all relevant i. 

Now it is clear that there can be no positions of  Wo that are strictly 
between p and q. By adding in the elements of  Avq one after the other, we 
reconstruct W and also add in all of  the positions of  W that lie between 
p and q. Thus, as far as the finite space between p and q is concerned, it 
is possible to apply the same analysis as was used in Section 4.8, and thus 
we can associate positions with elements of  W, as was done there. 

The main problem, of  course, is to try to pursue the program outlined 
in Section 4.7. The partially ordered set W is assumed to satisfy the various 
assumptions listed in 4.7. The set W---and also the positions of W---are to 
be thought of  as being embedded in a (more or less) order-preserving way 
in R 4. It is this embedding in R 4 that will enable us to deal with the positions 
of  W in a geometric (that is, distance-related) way. 

Now, the simplest way to proceed is to assume that the embedding 
xlt : W---) R 4 is strictly order-preserving, so that for u, v ~ W we have u < vr 
�9 (u)<XP(v).  Certainly this assumption is very restrictive---the class of  
partially ordered Sets W for which there is an order preserving mapping of 
W ~ R  4 can be thought of  as being much smaller than the class of  sets 
having a proper  representation in R4. As previously noted, such a condition 
on W is certainly too restrictive. But for now I simply accept this assumption 
as providing a practical working hypothesis. 

We are interested in the geometry of the set of  positions of  W. But 
Example 2 of  Section 3.6 shows that, in general, these positions do not 
correspond with the points of  R 4. T h u s ,  strictly speaking, a new kind of 
geometry, other than that of  R 4, is necessary for a precise analysis. But 
rather than getting involved in such complicated questions, it seems best 
to expand our working hypothesis to include the assumption that the 
positions of  W are just the subsets C and W that are of  the following form. 
Given the embedding ~ : W ~ R 4, we can take an arbitary point x ~ R 4, and 
then take C = C -  u C § to be such that C -  = {u ~ W: ~ ( u )  -< x}. Then, given 
such a C - ,  we take C § to be such that C § = {v c W: v -> u, Vu e C-}.  Thus, 
according to this way of thinking, the positions of  W can be very closely 
associated with the points of  R4: such a position can be thought of  as 
corresponding with the point x ~ R 4. Note that since W is strongly discrete, 
it follows that in any compact  region K c R 4 there can be only finitely many 
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different lower cones of  the form C - = { u ~  W: W(u)_<x} for x ~ K .  We 
could define an equivalence relation o n  R 4 using the rule that for x, y c R 4, 

x ~ y <:r { u ~ W: ~ (u) --< x} = { u ~ W: ~ (u) -< y}. It could then be imagined 
that a position in W is just an equivalence class, by this rule, in R 4. 

It is interesting to note that this use of  the concept of  "strongly discrete 
sets" would seem to imply a type of "retarded interaction." That is to say, 
imagine first that we have W~ as above, and then we add in wi+l to Vr to 
obtain W~§ Let C be a position in W~+I that is associated with oJ;+~. Now 
our assumptions imply that the cone C is determined by its lower cone C- .  
In particular, this means that if C is associated with w~+l, then C must lie 
above w~+l. Thus, according to this way of thinking, elements w of W 
generate new postions above w - - o r  thinking in terms of space and time, 
an event at some point of  space-time generates new positions in the future. 
I f  we return to the ideas of  Section 4.7, then we can translate this into the 
thought that the assumptions there- - the  "cosmological  hypotheses" and in 
particular the assumption that the density of  points of  W in R 4 increases 
with increasing " t i m e " - - i m p l y  that the force of  gravity is of  a purely retarded 
nature, and therefore that it satisfies the law of cause and effect. 

Finally, it will be useful to consider the idea that adding in a new 
element to a partially ordered set increases the density of  positions of that 
set. Once again, let C be a position in W~+~ associated with the element 
~o~§ Now, if we return to the smaller set W~, then we have the single 
position D, say, which is such that D - =  C--{w~§ On the other hand, 
in the set W/+~ we have two positions, namely the position determined by 
C -  and also the position determined by C--{oJi§ The later is indeed a 
position, since, as proved in Section 4.8, C is on the edge of the cone above 
O ) i +  1 . 

Now, as we have seen, positions in strongly discrete, partially ordered 
sets W can be associated with elements of  W.. The question of most interest 
in the study of the geometry of  positions is, what are the distances between 
the elements of  W and the positions with which they are associated? One 
would like to claim that an element w of  W is associated with many positions 
close to w, but as one travels further and further away from oJ, the probabil i ty 
of  finding a position associated with w decreases. In fact, as far as establish- 
ing a correspondence with the theory of  gravity is concerned, one would 
like to show that the density of  positions associated with ~o is proport ional  
to the inverse of  the distance from w. 

4.10. The Distance to New Positions: First Derivation 

Let the partially ordered set W satisfy the conditions of  the preceding 
subsection. I now present an argument that shows, for a large class of  



Discrete Model for Classical Eiectrodynamics 1209 

possible discrete geometries, that the density of the positions in R 4 associated 
with a given element to e W is inversely proportional to the retarded distance 
to to (where to is considered as a point in R4). 

The idea is analogous to the usual "gauge invariance" condition that 
physicists often invoke. Specifically, assume that the density of the points 
of W in R 4 depends only on the fourth---"t ime"--component .  Thus, one 
can imagine that there exists some positive function d~ :Ro  R+ such that 
the density of the points of W in R 4 around the point (x, y, z, t) ~ R 4 is given 
by dl(t). Since W is strongly discrete, and furthermore, since the positions 
of W are defined in terms of the elements of W, it seems reasonable to 
assume that the density of the positions of W in R 4 also depends only on 
the time. Thus, one can write d2(t) to represent the density of the positions 
of W in R 4 at the point (x, y, z, t). The gauge invariance principle to be 
used is then the assumption that for all t c R ,  the ratio dl(t)/d2(t) is a 
constant. 

What are the consequences of these assumptions? To begin with, recall 
from Section 4.9 that the positions of W can be associated with points of 
W; in particular, each position is associated with a point that comes before 
the given position in time. Furthermore, it was concluded there that adding 
in a new element to to W increases the density of positions of W above to. 
For the purposes of the present argument then, assume that 

d 2 ( t  ) -- [ '  constx  dl(s) ds (68) 
d -  c o  

This expresses the idea that (1) points such as tos in W at the time s 
contribute to building positions P, in W at time t, where t > s, and (2) the 
propensity of tos to build P, depends only on the density of the already 
given positions around P,. Admittedly, this formula is somewhat stronger 
than the arguments of Section 4.9 allow. Continuous functions like d~ and 
d2 in R 4 describe a structure that is very different from the discrete structures 
considered there. But a more serious objection is that one has not given a 
precise definition of these density functions. Thus, the idea 2 above, while 
appearing to follow from the philosophy of "gauge invariance," has not 
been strictly established; how can one reconcile the discrete adding in of 
individual elements of W, as in Section 4.9, with the assumed homogeneity 
of W in spacelike directions in R 4 required by the density functions? In 
addition, one is assuming that the probability that a new position P, is 
generated by adding in the element ws depends only on the density of the 
already existing positions around P,. Again this might be a reasonable idea 
in the framework of continuous distributions of "particles" and "positions," 
but it can at best be an approximation when applied to discrete spaces. 
Finally, it could also be objected that while gauge invariance plays an 
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important role in " local"  descriptions of quantum field theories, in fact its 
global counterpart in the realm of cosmology--namely the "steady state 
universe"--appears  for various reasons to have fallen into disrepute. Thus, 
if we are to adhere to the currently accepted interpretations of the astronomi- 
cal observations, then we must be prepared to abandon the principle of 
gauge invariance, at least to the extent that it is applied to globally defined 
models such as the one we are considering. 

But granted all of  these limitations, it is still interesting to examine the 
consequences of (68). Now, assuming that d2 is proportional to dl, it follows 
that 

di(t) -- ci e k' (69) 

for i =  1, 2, with appropriate constants ci and k. [Of course, the critical 
reader may at this point object--with reason-- that  (69) could itself have 
been asserted directly from a global gauge invariance condition!] 

Granted (69), then consider a contraction of R 4 of  the form A : R 4 ~ R 4 

given by A((x, y, z, t)) = (ax, ay, az, at) for some 0 <  a < 1. Let the embed- 
ding q~: W " - ~ R  4 be given, having the density functions d~(t) and d2(t), 
satisfying (69). Now the set W0 = A ~ ( W ) c  R 4 is similar to, but "denser"  
than, the original embedded set ~ ( W ) c  R 4. Thus, we also have density 
functions bl and b2 for Wo. The similarity between W and Wo is expressed 
by the conditions bi -- adi for i = 1, 2. It is therefore a natural idea of think 
of removing some "homogeneous"  set of points W* from A ~ ( W ) ,  thus 
"thinning out" A~(W) ,  so to speak, and producing a subset WI= 
W o - W * c  Wo similar to the original embedding ~ ( W )  and having the 
same density functions d~ and d2 as ~F(W) had. 

The purpose of  this contraction and then removal of the subset W* is 
to allow us to use the ideas of  Sections 4.8 and 4.9. On one hand, W~ is 
similar to ~ ( W ) ,  and thus to W0. On the other hand, W~ is a subset of  
Wo, so that it is possible to add in the points of  W* to W1, gradually 
building up Wo, and allowing thereby the association of positions in Wo 
with points of  W*. Let v �9 W* be some arbitrary point. We are interested 
in the set of  positions ~ ( v )  in Wo that are associated with v. Now, it is 
being assumed that the positions of ~ (v )  are to be found on the boundary 
of the light-cone above v. There is no preferred direction here, so it is 
reasonable to say that the density of the positions of ~ ( v )  depends only 
on the retarded distance to v. Thus, it is assumed that there exists some 
real function ~b:R++R+ such that the density of ~ ( v )  at the retarded 
distance r from v is given by 4~(r). 

What form does this density function ~b have? Since W~ occurs in the 
process of  constructing W (according to the way of thinking in Section 
4.9), one can write &(ar)= fb(r)/a, or ~b(r)= aga(ar), for all real a >0 .  
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(This follows because the relationship between the positions of W and the 
elements that generate them is the same for the "dense" set W0, the "thinned 
out" set W1, and also for the original set W.) But then we need only choose 
a = 1 / r  to see that ~b(r)=const•  ( I / r ) .  Therefore, by this argument, we 
have reached the desired result that the density of positions associated with 
a given element of W is inversely proportional to the retarded distance. 

This derivation follows from simple and general principles of symmetry, 
and yet despite this fact, it should be criticized. I have already listed some 
of the problems that must result from such a mixture of continuous and 
discrete ideas. In addition, the argument is based on the idea of establishing 
a correspondence between two similar embeddings of W in R 4 related by 
means of a guage transformation. Thus, the argument loses its validity if 
applied to spaces modeled on a different geometry than R4: in particular, 
it is invalid if we assume that our model for space-time is compact in 
spacelike directions. For these reasons it seems appropriate to look for a 
more direct explanation of the relationship between retarded distances and 
the density of the positions associated with a given element of W. 

4.11. The Second Derivation 

For the purposes of this second derivation of the density-distance 
relation I will continue to make use of the assumptions of Section 4.9. But, 
in contrast to the argument of Section 4.10, I will go beyond the idea that 
the positions associated with elements v of W can be calculated using 
"density" functions with respect to a given embedding of W in R 4. Now it 
is proposed to investigate in more detail the method by which the geometry 
of W influences the relationship of "association" between positions and 
elements of W. Of course, it is still necessary to work in R4; the density- 
distance relation is expressed in terms of Euclidean geometry. Thus, it is 
still necessary to make difficult assumptions regarding the problem of finding 
good embeddings of W in R 4. 

To begin with, it is important to remember that only the positions that 
are nearly of the form discussed in Section 4.9 are important: extreme 
examples, such as Example 2 of Section 3.6, can be disregarded. This follows 
from the way we are using the concept of positions to define distances in 
W. Only the positions between adjacent points of a particle are used to 
determine the distance between these points in the discrete version of 
Fokker's principle (47); all other positions play no further role in the 
argument of Section 3.9. Recall, finally, that in the discussion in Section 4 
it was concluded if the density of points of W in R 4 increases with increasing 
time, then a given position of W is determined by  its l ower  cone. 

Now one can think of this as follows. Choose two points p, q ~ W c  R 4, 
with p < q, and consider the space between p and q. Since W is strongly 
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discrete, there are at most finitely many points beneath q, but not b e n e a t h  
p. Choose a hyperplane 

n~ = {(x, y, z, t) ~ R 4 such that t = ~-} 

The constant ~- is chosen so that H~ is below all the points of  W that are 
beneath q, but not beneath p. Then, according to the cosmological 
hypothesis, one can assume that the intersections of  the cones beneath these 
points---in the proper  representation of  W in R4---are topological 3-cells 
that are nearly perfect geometrical 3-balls. 

The emphasis here is on the word nearly. The 3-cells in H~--representing 
points and positions of  W---can be thought of  as having boundaries that 
depart somewhat  from true sphericity. In fact, the picture I have in mind 
is that most of  these 3-cells can be nearly represented as convex hulls 
spanning some other set of  smaller 3-cells in H~ (Figure 4). 

What is the geometric relationship between a point of  W in R 4 and a 
position with which it is associated? Let v c W be such a po in t - -benea th  
q but not beneath p - - a n d  let C be a position in W associated with v and 
lying between p and q. Now, both v and C are represented in H~ by nearly 
spherical 3-cells. We will assume that C can be represented nearly as the 
convex hull of  some set of  smaller 3-cells in H~: To describe this situation, 
we can say that C is supported by the point u c  W if u c  C - ,  and u is 
associated with a 3-cell in H~ that is on the edge of the 3-cell in H~ 
representing C. Now C is associated with v. That is, according to the 
reasoning of  Section 4.9, one should first imagine W with v removed, then, 
upon adding in v to W, find C occurring as a new position. But v itself is 
defined in terms of  its relationships with the other points of  W - { v } ;  i.e., 
v is also determined by its lower cone in W-{v}. Now this lower cone of  
v is represented in turn by the convex hull of  a collection of  nearly spherical 

Fig. 4 
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3-cells in H,.  Given all of  these assumptions, then, we can assert that if 
there exists a point u c W - { v }  that supports both C and v, then C can be 
associated with v. 

What is the probability that two such 3-cells B~ and Bw in H~, represent- 
ing a given point v and a given position C in W, have a common supporting 
point u? It is clear that at this stage one can bring in a geometric argument: 
two such 3-cells can have such a common supporting point only if their 
boundaries are nearly tangent. Furthermore, the probability of having such 
a common supporting point must be proportional  to the two-dimensional 
area where OBv and OBw approach each other closely. 

Thus, taking all of thes  e thoughts into consideration, it seems reasonable 
to proceed on the basis of  the following model. Let v, p, q, and H,  be as 
above. Choose some point x between p and q in R 4 lying on the Lorentz 
light-cone above v. Let Sv c H,  and Sx c H~ be the 2-spheres in H,  that are 
the intersections of  H~ with the  Lorentz light-cones beneath v and x, 
respectively. Then one may assert that the number  of positions of  W between 
p and q that are associated with v is proportional to the area of  S~ that 
lies near Sx. More specifically, take some e > 0 that is small in relation to 
the retarded distance from v to x and to the distance from v to H~. Then 
one can assert that the number  of  positions of  W between p and q that are 
associated with v is proportional  to the area of  the subset of  points of  Sv 
that have a distance at most e from Sx. 

Figure 5 depicts the two spheres Sx and S~. The radius of  the inner 
sphere S~ is r, while the radius of the outer sphere Sx is R. The spheres Sx 

Fig. 5 
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and S~ are tangent to one another  at some point P in H,.  A sphere of  radius 
R - e that is concentric to Sx has also been pictured. One may imagine that 
R is much greater than R - r and that R - r is much greater than e > 0. The 
problem then is to determine the area of  the portion of  Sv that lies in the 
concentric region between Sx and the sphere of  radius R - r .  The area of  
this subset of  Sv can be deduced by means of a simple geometrical argument 
(using the fact that we are working in four-dimensional Euclidean space) 
and is found to be proport ional  to 1 / ( R -  r). 

This is, once again, the desired answer - -namely  that the density of  the 
positions associated with a given element of  W is inversely proport ional  
to the retarded distance to that element. It is obvious that once again I have 
made very many geometrical assumptions of  a more or less arbitrary nature 
whose appropriateness is, at best, debatable. It can only be hoped that in 
the future better means can be found to describe the geometry of partially 
ordered sets. 

4.12. A Connection with General Relativity 

Let us return to the problem of calculating the geometry of  space in 
the neighborhood of a massive body. In the f ramework of  general relativity, 
one might say that the natural,  "undis turbed" state of  things is the flat space 
R 4 with the Lorentz metric. Gravity comes about when one introduces matter  
into the flat space, thus altering i t - -producing  a curvature. Now I will also 
make use of  this way of  thinking. 

As in Section 4.7, consider the flat space of  special relativity as represen- 
ted by some region in R 4 (with the partially ordered set W embedded in 
it) that is distant from any particular concentration of points of  W. Thus, 
as we have seen, in such a region the positions of  W can be expected to 
be distributed nearly homogeneously.  It will be assumed that this set W 
satisfies the discrete version of  Fokker 's  variational principle (47). 

Now that we have settled on this flat, undistributed region of space-time, 
the next task is to introduce an accumulation of  matter into the region, as 
one does in general relativity. Here, this means adding one by one a great 
number  of  discrete, nearly identical particles that pass through the region 
all following more or less the same path. For simplicity, and since I have 
not shown how to deal with the gravitational fields of  moving objects, using 
the linearized gravitational equations [see, e.g. Narlikar (1978) for this] I 
assume that this path is straight and parallel to the fourth (time) coordinate 
axis of  R 4. 

Denote the set of  discrete particles to be added in to W by {L1 . . . . .  L~ }. 
The first thing to do, then, is to add in the particle L1. According to the 
ideas of  the last two subsections, this produces in the new partially ordered 
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set W u  L1 a new set of positions, additional to the original set of positions 
in w, namely the positions in W u  L1 associated with elements of L~. The 
density of this new set of positions is approximately inversely proportional 
to the distance from L 1. Thus, if the density of positions of W in R 4 (in 
the region we are considering) is given approximately by the constant D, 
i.e., D positions of W per unit volume in R 4, then in the new set W u  L~ 
we have the density of positions at some point (x, y, z, t) ~ R 4 lying (cos- 
mologically) near, but at a distance r from L I ,  being given approximately 
by 

D x (1 + k~ r) (70) 

where k is some appropriate small constant. Of course one should not take 
this formula too literally, and object that it implies that at L~ the density 
must be infinite. Such an assertion would be nonsense, since we have 
assumed that W is strongly discrete. Instead, the formula can only be seen 
as providing a useful appproximation, making use of familiar concepts from 
the traditional continuous geometry (in particular, making use of  the idea 
of "density"). 

We now have the set W w L 1 . The next thing is to add in the particle 
L2, giving the larger set Ww L 1 u L 2. Once again we obtain an additional 
set of positions, which this time are associated with the elements of L2. 
The increase in density of positions at a given point in R 4 near L2 is once 
again proportional to the inverse of the distance to L2. Since L1 and L 2 

nearly coincide, we obtain that the total density of positions in W w L1 u L2 

is given approximately by 

D •  k )  •  k )  = D x ( l + k )  2 (71) 

It is important to note the nonlinear character of this formula. It is 
definitely not the ease that the same number of positions in W • L1 w L2 
are associated with LI as are associated with L2! If such were the case, then 
we would have the density of positions in W u  LI • L2 being given by 
D • (1 + 2k/r) .  The formula we have gives a somewhat greater value, namely 
D • (1 + k~ r) 2 = D x [1 + 2k/r  + (k/r)2]. How can this be explained? I could 
refer to the argument in Section 4.9, which shows that adding in new 
elements of W increases the density of the existing positions of W. But it 
is also easy to see that when adding in L2 there are more possibilities for 
creating new positions than there were in the ease of L~; these new positions 
associated with L2 can utilize not only the original elements of W, but, in 
addition, also the elements of L~. 

It is now possible to add in the further particles L3, �9 �9 �9 Ln. Using the 
same arguments and assuming that n is large, we obtain that the density 
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of  the set W w  L~ u �9 �9 �9 • L ,  is given approximately by 

D • (1 + k / r ) "  -~ D • e k"/r  (72) 

But k n  is proport ional  to the total mass of  the particles in L~ ~ �9 �9 �9 u L,,  
and thus a connection with the formula (67) is established. 

Is it possible to deduce from these ideas a theory of gravity that is 
similar to the usual theory? For this purpose a number  of  new ideas will 
be necessary. Relation (72) only describes the relationship of the density 
of  the positions in W to the density of  the positions in W u  L1 u �9 �9 �9 u L,.  
But, as we have seen, gravitation is a geometrical phenomenon,  depending 
on the measurements  of  distance within space-time. Thus, it will be necessary 
to look at the effect of  this change of density of  the positions in our partially 
ordered set W on the metric structure of  W. 

4.13. The Metric Structure of W 

The idea of distances in discrete, partially ordered sets was dealt with 
in Section 3.7. In particular, I assume that all the discrete particles in W 
are p r o p e r  (see Definition 1 of  Section 3.7). This definition is applied in the 
discrete formulation of Fokker 's  action principle (47). Since I am dealing 
with gravity, I assume that all of  the particles have zero electrical charge, 
so that the interaction terms in (47) vanish. What remains is the assertion 
that in W all the particles are proper,  and their lengths- -measured  by 
counting the number  of  elements of  W along finite stretches of  typical 
p a r t i c l e s I a r e  extrema with respect to finite variations. 

Now, the present approach to dealing with this complex situation has 
been to imagine that W is embedded in the familiar space R 4 in such a way 
that the ordering structure of  W is nearly reflected by the Lorentz ordering 
in R 4. This seems to be a reasonable idea in the "flat" area of  W, which 
was the beginning position for the argument of  Section 4.12. But, as we 
have seen, the introduction of the new particles L I , . . . ,  L~ changes the 
density of  the positions of  W, resulting (through the definition of "p roper"  
particles) in a change in the Lorentz distances to be associated with the 
distances between adjacent points on a proper  particle. How can we deal 
with these changed Lorentz distances? 

Let, say, p, q be adjacent elements on the particle L~. That is, p < q, 
and there is no element of  LI that lies properly between p and q. Since L1 
is assumed to be a proper  particle, there is some constant that specifies the 
number  of  positions of  W between p and q. (Note that there can be no 
position of W u  L1 between p and q that is associated with an element of  
La.) It can therefore be imagined that p and q according to the Lorentz 
ordering has some fixed four-dimensional volume, characteristic for the 
particle L~. 
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Then the other particles L2, . . . ,  Ln are gradually introduced into R 4 
one by one, bringing with them more and more particles and positions, 
according the formula (72). Now if we leave p and q and the basic metrical 
structure of R 4 fixed, then we will suddenly find that there are too many 
positions of W between p and q. With the increased density of positions, 
it is to be expected that some of the new positions will be found in the 
space between p and q. But not only here. All of the (proper) particles of 
W, those moderately near L1 and also those far away, will also receive new 
positions between their adjacent elements--according to the formula (72)--  
thus invalidating throughout W the property that the particles are proper! 

The only way to repair the situation and restore the property that the 
particles should be "proper"  is to alter somewhat the ordering structure of 
W. This can be achieved by (1) adjusting the embedding of W in R 4 and 
also by (2) altering somewhat the basic ordering of R 4, resulting in some 
departure from the Lorentz metric. A combination of these methods should 
be most appropriate. There is a certain freedom of choice, which results in 
a multiplicity of essentially different ordering structures. What choice should 
we make? 

To answer this question it is best to remember that the choices here, 
involving various metrics for R 4, are,  from the point of view of physics, 
concerned with the measurement of the speed of light. The causal structure 
of W is, after all, to be thought of as representing the causal structure 
generated by the light-cones in the usual formulation of space-time. Now, 
the most basic principle of the theory of relativity is that all possible 
measurements of the speed of light must yield the same constant result. 
Thus, it is natural to adopt the same principle and assume that the alterations 
to the metrical structure of W resulting from the introduction of the new 
particles L 1 , . . . ,  Ln must be made in such a way as to preserve the constancy 
of the measured speed of light in W. 

This leads to the question, how should the speed of light be measured 
in W? Imagine a conventional experiment to measure this speed. The 
experiment begins with a pulse of light being emitted at the point A ~ R 4, 
say (Figure 6). An observer is stationed at A to keep track of events. The 
light travels to some point B ~ R 4, where it is reflected by a mirror back to 
the observer, whom it meets at the point C ~ R 4. Now it is assumed that 
the observer travels from A to C in a straight line, without acceleration. 
Let D be the halfway point on the line connecting A and C. Then the speed 
of light deduced from this experiment is to be calculated by taking for the 
distance the Lorentz distance between D and B, and for the time the Lorentz 
distance between A and D. 

All of this can be made to make sense in an abstract, partially ordered 
set W (even without imagining an appropriate embedding in R4). Finding 
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appropriate points A, B, and C within such a set is just a matter of finding 
points on the edges of the appropriate cones of W--given by the order ing--  
above A and above B. The halfway point D can be found by specifying 
that the number of positions between D and A is equal to the number of  
positions between D and C, and this number is the largest possible. 

This experiment allows the observer traveling from A to C to fix an 
idea of  the local speed of  light for that observer. The particular value chosen 
is unimportant for the purposes of the theory of  relativity. The important 
thing is to have a constant, and thus consistent value for this speed, for all 
possible measurements. Now, one measure of consistency is to consider the 
following, slightly more complicated experiment, which allows the observer 
to measure the speed of  light at some distance. 

In this new experiment, the observer emits a pulse of light at A, then 
travels a short distance to A' and emits another pulse of light (Figure 7). 
The observer then continues in the same direction without acceleration. 
The first pulse is reflected by a mirror at B, while the second is reflected 
by a mirror at B', which is closer to the line taken by the observer than B. 
The two light pulses travel back and meet the observer at the points C and 
C', respectively. One may assume that things have been so arranged that 
the distance from A to A' is equal to the distance from C to C'. Once again, 
D is the halfway point between A and C. By this means, the speed of  light 
around B and B' can be measured by an observer traveling from A to C. 

Of course, the retarded distances, say from A to B or from B to C, 
are given by Definition 4 of Section 3.7. Thus, we have two different ways 
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of measuring distances within the abstract, partially ordered set W, and it 
is certainly conceivable that these various experiments might measure 
different speeds of  light within W. Looked at another way, it seems reason- 
able to say that the condition that all such measurements must yield the 
same local speed of light is a very restrictive new condition to be imposed 
on all partially ordered sets that are to be considered as models for space- 
time. Thus, W is defined to be consistent with respect to distances if all 
measurements of the "speed of light" in W using these procedures and 
definitions yield a consistent value. 

Can it be that this condition is what is needed to bring us from 
expression (72) to a geometrical model for gravity, similar to that described 
in Section 4.6? That fact that there are three spatial dimensions and one 
dimension of time should play an important role in such an investigation. 

5. A POSSIBLE C O N N E C T I O N  WITH THE THEORY OF 
QUANTUM M E C H A N I C S  

5.1. The Interpretation of  Quantum Mechanics  

The question of the interpretation of quantum mechanics must surely 
be one of the most difficult and controversial areas of  philosophy. In what 
other subject can one find such vehement, even bitter criticism, as that 
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expressed by Land6 (1965) or Schr6dinger (1953)? It is well known that 
Einstein was never prepared to accept the theory, except insofar as it could 
be considered to be an "incomplete" version of some more reasonable, 
underlying theory (see, e.g., Schilpp, 1949). A summary of  many of  the 
possible points of view and of  the positions maintained by famous physicists 
can be found in Jammer (1974). Particularly useful is Feynman et al. (1965). 

Now the idea of  the standard "Copenhagen interpretation" of quantum 
mechanics is that we should begin by rejecting all hopes of constructing a 
geometric model that has mathematical properties modeling the physical 
world as we experience it. Instead, it is necessary to construct an abstract 
model: a Hilbert space. In principle, there is nothing to object to in this: 
after all, the theory of  Hilbert spaces is an interesting and widely studied 
area of pure mathematics. As far as Hilbert spaces are concerned, one 
normally considers such things as "points," "lines," "functionals," and so 
forth. The physicist prefers to use other names, such as: "experiments," 
"observers," "states." Once the Hilbert space framework is accepted, one 
can build up a consistent mathematical model for describing the physical 
world. For example, von Neumann (1955) was one of  the first to do this. 

Thus, the problem in the interpretation of  quantum mechanics is not 
the lack of a good model, i~r even the question of whether or not there exist 
experiments that may be at variance with the model. Physics, when taken 
to be the study of Hilbert space, appears to pass all such tests. The real 
question is, why is it necessary for physicists to base their theory on a kind 
of  axiom system whose basic, immutable, undefinable objects--denoted by 
the words "observer," "experiment,"  e tc . - -appear  to signify concepts that 
any sensible person would think of as being very much mutable and 
definable. Another common objection, expressed particularly by 
mathematicians, is that the relationship of the Hilbert space construction 
to the more concrete models of the physical world that are used in mathe- 
matics (for example, in elementary geometry or classical probability theory) 
appears to be rather obscure. For example, the successful and practical new 
methods for analyzing the structures of large molecules can be understood 
within a very traditional geometrical framework. Is it possible that this is 
only an illusion, resulting from some obscure "correspondence principle"? 

It is also true that physics, when considered purely in terms of Hilbert 
space, is, strictly speaking, a most restricted subject. Taken literally, it would 
seem to imply that "describable" phenomena only came into existence after 
the evolution of  man supplied the world with suitable "observers." The 
prehistoric world must have been governed by a different set of physical 
rules! Such an idea seems difficult to accept, but logically speaking there 
is nothing wrong with it. It is true that we have no way of observing a world 
without people, and therefore such a world could have strange properties. 
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Thus, as with Schr/Sdinger's famous "cat  paradox,"  we are reduced to a 
simple banality. 

The idea of "hidden variable" theories has received much attention. 
The idea is that perhaps quantum mechanics is not so very different from 
classical mechanics after all. The advocates of  such theories argue that some 
unobservable processes within a classical framework could explain the 
apparently indeterminate nature of quantum mechanics. In his book, von 
Neumann presented an argument that purported to show that hidden 
variable theories could not be valid. But his argument has itself been the 
subject of  much criticism. Thus, a certain amount  of controversy has sur- 
rounded the whole question of hidden variables for many years. This undue 
attention that the subject has received seems to have led to a polarization 
of thought on the foundations of  quantum mechanics. Thus, we are confron- 
ted with two equally disagreeable alternatives: either (1) we should pursue 
the study of hidden variable theories, or (2) we should accept the idea that 
the "observer"  is a mystical entity beyond the reach of scientific inquiry. 
The first alternative seems to have led nowhere, and in any case it would 
appear  to be in direct conflict with the experimental evidence. The second 
alternative amounts to an abandonment  of  the scientific method i tself--  
surely a repulsive idea to anyone interested in science! But it seems to me 
that this polarization of thinking on quantum mechanics is, in fact, 
unnecessary. Are these two alternatives the only ones really available ? Could 
it not be that the conventional assumption that continuous (Euclidean) 
space should form the basis for all models in physics leads to just these 
two alternatives? On the other hand, if we broaden our way of thinking 
and allow the possibility of  discrete geometr ies--combined with action at 
a distance in physics- - then it seems reasonable to expect alternative expla- 
nations to become possible. 

Can it be that a discrete geometrical f ramework would allow a more 
satisfying interpretation of quantum mechanics? The fact is that quantum 
mechanics, which is most certainly a theory of discrete phenomena,  is 
described in terms of continuous, even differentiable, structures. On the face 
of  it, this appears to be obviously inappropriate. Furthermore, this descrip- 
tion has been found to be unsatisfactory by many of the great physicists--  
even ones who themselves contributed to the original formulation of the 
theory. Thus, it is most natural to consider some speculations on the possible 
relevance of the present discrete model for the question of the interpretation 
of quantum mechanics. 

The goal of such an investigation should not be the overthrow of 
the existing theory. Surely any sensible person will accept the validity of  the 
quantum theory as it is applied in practice. But by the same token, even the 
most enthusiastic supporter of  the standard interpretation of quantum 
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mechanics must admit that the "observer" is forced into a strange role 
apparently outside conventional understanding. This problem of the obser- 
ver is a blemish on the theory that one must attempt to eliminate. Thus, far 
from seeking a new mathematical description of  quantum mechanics, my 
goal is simply to find a more satisfying foundation for the theory, encompass- 
ing not only the external world, but also the observer as well. 

In the rest of  this section I will outline a number of ideas that appear 
to provide a basis for such a new foundation. As with any theory, it is based 
on a number of hypotheses that the reader may or may not be willing to 
accept. But even if the specific hypotheses are not accepted, the basic 
motivation for our theory must be taken seriously. The fact is that even 
now--more  than 60 years after the initial formulation of the quantum theory 
and its probabilistic interpretat ion--many theorists still profess themselves 
to be unhappy with the foundations. If we leave aside all of  the accumulated 
philosophical speculation of those 60 years, the basic problem remains: 
namely, does there exist a mathematical model for physics that exhibits the 
statistical properties required by the quantum theory? The mathematical 
model should be complete, in the sense that it contains within itself every- 
thing to be described--including possible "observers"! Within the 
framework of  differential geometry, nothing sensible has yet been found. 
What is the situation with respect to discrete geometries? Strangely enough, 
this subject-- the investigation of the statistical properties of possible discrete 
geometries--has apparently never been investigated. Thus, it would be a 
good idea to study such discrete structures first, before pursuing further the 
philosophical problem of  the role of  the observer in the theory of quantum 
mechanics. 

5.2. Nonlocality and the Concept of  Probability 

It is necessary to think carefully about the concept of probability, how 
it is used in quantum mechanics, and its relationship with the concept of 
time. My thesis is that the "classical" way of thinking about time and 
probability is no longer appropriate when it comes to describing quantum 
systems. These concepts should be considered not from a "local," but rather 
from a "global" point of view. 

Now the idea of " t ime" has meaning within some specific model of 
physical space-time. Within the present framework, this would be some 
specific partially ordered set W. On the other hand, "probabili ty" should 
express relationships between possible different models for space-time. That 
is, probabilities should be calculated by taking the class of all possible (and 
"physically meaningful") partially ordered sets. The probability P that the 
experiment E has the outcome 0 is calculated by taking all possible sets 
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W that happen to contain E. The fraction of these sets that exhibit the 
outcome O is then defined to be the probability of O, namely P. 

Now, in classical physics one has, very typically, a problem of the 
following sort. Let the state of a physical system be given at a certain time. 
Then the question is, what will the state of the system be at some time in 
the future (say, in 1 min)? Perhaps many traditionalists would say that this, 
and nothing else, should be the proper domain of physics. Thus, the idea 
of "time" plays a very important part, not only in the theory itself, but it 
even determines what we are allowed to think about as belonging to the 
theory ! 

For example, probability theory, or statistics, might be used to analyze 
the outcomes of throws of dice or of actuarial data for an insurance firm. 
One might throw the dice repetitively many times onto the same table, or 
perhaps many people could throw a dice onto many different tables simul- 
taneously. One thinks of this as being a great number of similar, when not 
identical, experiments, which are all independent of one another, occurring 
at different, but essentially similar times. 

The important point, though, is that all of these experiments occur 
within the same universe. Thus, if one is prepared to think of things from 
the global point of view (and if one accepts action at a distance, then there 
is no alternative!), then all of these different throws of the dice are not 
independent. On the contrary, they must be thought of as being constituent 
parts of an unchangeable entity, namely a partially ordered set W that 
satisfies an appropriate variational principle. One can only begin to talk 
about truly independent experiments when one compares different possible 
partially ordered sets. 

Clearly, two different experiments E~ and E2 that occur within the 
same set W are not independent if one of the experiments follows the other 
in time. That is, if El < E2, where El,  E2 c W, then E, is not independent 
of E2. (There might be obvious causal effects here: for example, wafts of 
air or vibrations of the table might influence the successive throws of the 
dice.) But when we consider the way W is defined, it will be realized that 
W must satisfy a global variational principle, and so even if E1 and E2 are 
"simultaneous" in the sense of relativity theory, they still cannot be indepen- 
dent of one another. 

Now it might be thought that this discussion is nothing more than 
obscure philosophical hair-splitting. Every sensible person knows that 
different throws of the dice are, for all practical purposes, independent. It 
might be admitted that one throw could produce small effects that might 
persist long enough to influence, in some way, the next throw. But we are 
unable to keep track of all these effects, and this lack of knowledge of the 
fine details is precisely what is needed to make probability theory work in 
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the classical sense. Thus, one can think of the question of the independence 
of  repetitive experiments as being one of  degree, rather than of substance; 
obviously, if two dice are thrown almost together, so that they are in physical 
contact, then the outcome of one experiment influences profoundly the 
outcome of the other experiment. On the other hand, if they are widely 
separated, then it is difficult to imagine how one throw could influence the 
other. 

It might be thought that it is easy to decide in an intuitive way--a t  
least in the case of  the dice game--whether  or not two throws are sufficiently 
independent of each other to allow probability theory to be invoked with 
reason; one uses everyday, sensible experience for this. But what about the 
case of quantum mechanical experiments, where much runs completely 
counter to the usual intuition? It is perhaps best to cite a version of  Einstein, 
Podolski, and Rosen's (1935) famous "thought experiment" [Bell (1966) is 
also relevant here]. 

This can be formulated as follows. Two observers A and B sit facing 
one another at a great distance apart. At the midpoint between them is a 
radioactive source, which occasionally emits pairs of electrons, one traveling 
to A and the other to B. If  A's electron has spin up, then B's has spin 
down, and vice versa. According to the hypotheses of quantum mechanics, 
the individual electrons are at first in neither the spin-up nor the spin-down 
state. But then A decides at some time to observe its electron, observing, 
say, that it has spin up. At that moment in time, the "wave function" 
collapses instantly, thus apparently violating the principle of relativity and 
forcing B's electron into the spin-down state! The paradox here is that two 
seemingly widely separated and independent events turn out to be not as 
independent as the "everyday intuition" would lead one to believe. 

Certainly other people have also emphasized the importance of con- 
sidering quantum mechanics in terms of global, rather than local, 
phenomena. But it seems to me that the action-at-a-distance theory, com- 
bined with a framework of  discrete, partially ordered sets, provides a means 
of  understanding in a simple and practical way how these seemingly para- 
doxical effects can come about. 

5.3. A Definition of "Probability" for Quantum Mechanics 

5.3.1. The Definition of Probability (Finite Case) 

How should probabilities be defined in this framework? To begin with, 
let "~ be the set of all possible discrete partially ordered sets satisfying the 
various assumptions made so far [and especially including the variational 
principle (47)]. Now it is unclear how many elements E contains. (Our 
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definitions have, in any case, been vague.) Perhaps ~7 contains infini tely 
many elements, or perhaps only finitely many, or it may even be empty! 
We would like to define "probabili t ies" by simply counting the numbers 
of elements of  E with various properties. 

Let E be an "experiment."  What does that mean? For us it means that 
a possible universe W c ~7 contains the experiment E if a certain agreed 
upon pattern of  elements can be found within W. I f  this pattern occurs 
more than once in W, then we will agree to consider each occurrence of 
the pattern as representing a separate universe within this set. Denote the 
set of all possible universes containing the experiment E by ~7z c ~_. 

Let us say that the experiment E can have different outcomes A, B, 
etc. In this case we will denote by ~7 ~a)  ~ EE the set of universes containing 
the experiment E with the outcome A. In the case that Ee  is finite, the 
probabili ty of  the outcome A will be defined to be IE~A>I/IEEI (where the 
notation Ixl denotes the number  of elements in the set X).  

5.3.2. Probabilities (Infinite Case) 

I f  "=e is infinite, then things are more difficult. One way to proceed is 
to consider neighborhoods of E. Let the set W c  EE, and take this to mean 
that there exists a finite subset E ~ W that represents the given experiment. 
How can the idea of "finite subsets" in strongly discrete, partially ordered 
sets be defined? We will say that for each n ~ N, the ball of radius n with 
center E is the set of points a e W such that there exists some b ~ E with 
IWb-- Wal+l Wa - Wbl<-n. (Here Wa = { u ~  W: u<--a}.) Denote this ball of 
radius n by B,( W, E). It seems reasonable to assume that B,( W, E)  is finite 
and of limited size [that is, there exists an re(n) ~ N such that IBm( W, E)I-< 
m(n) for all W e  Ee l .  This could be taken to be part of  the definition of 
E (i.e., an experiment will not be allowed to have some arbitrarily large 
gravitating body in the immediate neighborhood).  For fixed n E N we say 
that the sets W, W*6 7~E are n-equivalent if there exists a one-to-one 
correspondence B, ( W, E)  ~-~ B, ( W*, E)  that preserves order. This is an 
equivalence relation, and for each n, the number  of  equivalence classes 
must be finite. 

Now let A be some possible outcome of the experiment E. For each 
n c N, the probability of A of order n is defined to be the ratio of  the number 
of  n-equivalence classes of  E that have the outcome A to the total number  
of  n-equivalence classes of  E. Finally, the probability of A is defined to be 
the limit of  the probability of  A of order n as n ~ co, if it exists. If  the 
experiment E is such that all possible outcomes A have probabilities in 
this sense, then E will be called a proper experiment. In the sequel it will 
be assumed that all experiments under consideration are proper  experiments. 
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This definition leads certainly to difficult, or even impossible to prove, 
conjectures concerning its relevance in physics. Are the usual experiments 
dealt with in most physics textbooks "proper"  experiments or not? This is 
obviously a question of such complexity as to defy all hopes of answering 
it. But such a situation is not unusual in theoretical physics. For example, 
it is often claimed that classical mechanics represents a kind of "limiting 
behavior" of  quantum mechanics as Planck's constant is allowed to 
approach zero. But what hope is there of ever proving this assertion: that 
is, of  deriving the basic definitions of classical mechanics from the axioms 
of quantum field theory? 

5.4. The Two-Sl i t  Interference Experiment 

The traditional two-slit interference "thought experiment" consists of 
the apparatus depicted in Figure 8. Particles--for example, electrons--are 
emitted from a pointlike source and begin to travel through the apparatus 
in the direction of  an absorbing screen (e.g., a photographic plate). Most 
particles collide with an obstruction set up between the source and the 
screen and are thus lost. But some particles find their way through two 
narrow slits cut into the obstruction. These particles travel on to the screen 
and make a mark there. The source is allowed to emit many particles, and 
eventually a pattern emerges on the screen. The pattern shows an interference 
effect in the statistics of  the particles, as if waves had gone through the two 
slits and produced interference with themselves. But the curious thing is 
that these are waves of  probability! 

How can we explain this? According to Feynman et al. (1965), this 
experiment illustrates the single, inexplicable, and essential mystery of 
quantum mechanics. We are doubly interested in an explanation, since the 
Feynman path integrals, which arguably provide a basis for understanding 
all quantum theory, are concerned with the analysis of idealized experiments 
like these. 

Obstruction Scree n 

Source 

lower slit 

Fig. 8 
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Now, the first step is to stop thinking of the two-slit experiment as 
consisting of a large number of electrons passing through the apparatus, 
one after the other, to produce an averaged interference pattern on the 
screen. Instead, according to the present way of thinking, a single experiment 
consists of the passage of a single electron from the source to the screen 
in a single apparatus. The object of the experiment is to find the relative 
probabilities for the arrival of an electron at different points of the screen. 
We therefore choose two different points P and Q on the screen and compare 
the probabilities for the arrival of the electron at P and Q (Figure 9). Point 
P is chosen to give constructive interference in the sense of the quantum 
mechanical waves. Q is a point of destructive interference. P is such that 
the difference of the (three-dimensional) path lengths for the straightest 
possible paths from the source to P through the upper and lower slits is 
an exact multiple of the de Broglie wavelength for the electron. Q is such 
that this difference is an exact multiple plus one-half de Broglie wavelength. 

Thus, it can be imagined that there are three classes of possible universes 
(or, in our terminology, discrete, partially ordered sets) to be compared 
here, namely the class ~ e  of all possible sets that contain the two-slit 
experiment E, and also EE(P) and -~e(o), which are defined to be subsets 
of ~ such that the electron lands at P and Q, respectively. 

Now, this experiment is formulated in terms of three-dimensional 
Euclidean space plus time, whereas our partially ordered sets W have only 
been defined in terms of the four dimensional space R 4 together with the 
Lorentz metric. Therefore, it is necessary to think about the experiment, 
and in particular the significance of the de Broglie wavelength, in terms of 
a relativistic formulation. 

The most appropriate way of doing this is to use the path integral 
formalism (Feynman and Hibbs, 1965). I shall go into this in more detail 
in the sequel, but for the moment the relationship between the path integrals 
and the de Broglie wavelength can be thought of as follows. Let W ~ ~ E(P) 

Obstruction Screen 

Source upper slit 

P 

Q 

Fig. 9 
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and let y 6 W be the path that corresponds to the electron in the experiment. 
In particular, assume that W satisfies the Fokker condition (47). For this 
specific W we have y passing either through the upper  or the lower slit. 
Let us say, for the sake of  argument, that y passes through the upper  slit. 
Then we can alter W slightly to give a new partially ordered set W#. The 
set W# is identical to W except that y has been changed slightly to give 
the path y#. The path y# in turn is identical to y except for the section 
between the source and P. For this section, y# takes the most direct path 
through the lower slit. Now, as is shown in Feynman and Hibbs (1965), the 
condition on the de Broglie wavelength is equivalent to the condition that 

f [y (v)v ' -  y#(v)v'] ds = nh/27r 

where n ~ Z, and h is Planck's constant. The point Q in the experiment is 
such that, instead of n, we would take n + 1/2. 

Of  course I do not claim that the new set W,~ also satisfies (47). In 
general, one expects that it will not. On the other hand, there is some chance 
that (47) might be satisfied by W#, and this will form the basis for further 
arguments. 

5.5. The Concept of Clusters 

To proceed further with the analysis of  the two-slit interference experi- 
ment, it is necessary to introduce a new idea, namely the idea of "clusters" 
of  sets. I f  one considers the set of  all possible universes E, then it is 
reasonable to imagine that some pairs of  elements of  E might be similar 
to one another, while other pairs might be very different. One could try to 
describe this situation by looking for some appropriate  definition of  a 
"dis tance" between different elements of  ~ ,  thus making 7~ into an abstract 
metric space. But this would involve introducing more details than are really 
necessary. The important  question is, given two elements W, W'~  ~,  is W 
similar to W'? 

Let W, W' be two elements of  ~.  I will say that W is equivalent to W' 
if there exist finite subsets V c W and V' c W' such that there is a one-to-one 
correspondence between ( W -  V) and ( W ' -  V') that preserves order. That 
is, W and W' are equivalent if they are the same, except perhaps for some 
finite subsets. This is obviously an equivalence relation. 

Definition 1. The equivalence classes of  -~ under this equivalence 
relation are called clusters. 

Unfortunately, the idea of a cluster appears  to be as difficult as it is 
important.  For example, the question might be posed, do there exist any 
clusters with more than one element'?. I will in fact proceed on the assumption 
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that most clusters contain many elements; this assumption expresses some 
of the relationships I had in mind when formulating the framework of 
discrete, partially ordered sets. But how could one possibly prove anything 
concerning the expected number  of elements in an average cluster? Clearly 
a great many simplifying assumptions would be necessary before any 
progress could be made in that direction. 

If  we now return to the classical, continuous case, namely Fokker 's  
model for electrodynamics, then each "cluster" can contain only one ele- 
ment. (See Theorem 5.1, below.) Here Definition 1 must be changed to deal 
with this continuous case: one posssibility for doing this is to say that W 
and W' are in the same cluster if they differ at most in a compact subset. 
Theorem 5.1 shows that in the continuous case a localized perturbation 
must, if Fokker 's  variational principle is to be satisfied, also result in a 
perturbation that grows throughout the set. 

The discrete case seems to be different. One can again have small 
perturbations, but now they must respect the discretization. This could 
perhaps best be thought of  as being a variation with constraints: namely, 
if 3/is a path and 3~# is a variation of this path between two points, then 
in order to have the paths remaining proper (see Section 3.7), it is necessary 
that the arc length of the varied segment of  3'~ differ from the arc length 
of  y along this segment by an exact multiple of  some finite discretization 
constant. Certainly there may be other statistical effects that make the 
discrete case different from the continuous case. But it seems reasonable 
to assert that clusters in "~ have, in general, more than one element. 

To summarize, then I assume that each cluster can be thought of  as 
representing a single classical path, and thus it represents the result of  a 
single experiment, considered in the classical physics of  the continuum. On 
the other hand, I will argue that the strange new quantum statistical 
phenomena  can be explained by assuming that some clusters in the discrete 
version of classical physics may contain many elements. One therefore has 
the correspondence 

paths in the usual classical physics r clusters in discrete physics 

Theorem 5.1. Let F, F' be two infinite sets of  sufficiently smooth, 
nonintersecting paths in R 4 such that any compact  region of R 4 meets only 
finitely many elements of  F and F'. Assume, further, that the assumptions 
of Section 2.6 hold for both F and F'. Let B c R 4 be a bounded set such 
that only finitely many paths meet B, and furthermore F coincides with F' 
in R 4 -  B. On the other hand, F differs from F' in B. Then at least one of 
the sets F, F' does not satisfy Fokker 's  principle (14). 

Proof. Clearly F and F' must contain the same number  of particles in 
B. Subject to a certain restriction, it is possible to find a particle % not 
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meeting B, and a point y( t )  on 3' such that no points diagonally above 3"(0 
are in B, and for only a single particle in F the contribution to Fret at 3"(t) 
is different from that of  the corresponding particle in F'. But for (14) to 
hold, we must then have 3' at 3"(t) in F differing from the corresponding 3' 
in F', a contradiction that proves the theorem. The exception is that there 
exist two (or more) particles ~1, ~2~ F meeting B and points ~:i(ri) of  ~:i, 
i = 1, 2, that are the highest points such that ~:i coincides with the correspond- 
ing particle in F' below ~i(r~), with the property that all of  the points on 
the particles, not meeting B, that are diagonally above ~l(r l )  fall on a straight 
line. Furthermore, sC2(r2) is also on this line. In this case, although the 
contribution of  ~; to Fre t immediately above s~(r~) differs for F and F', i = 1, 
2, these differences could cancel one another at some points diagonally 
above those points of  scg. These points of  cancellation may happen to lie 
on particles that do not meet B, thus invalidating the original argument. 
But such can only be the case for finitely many of those particles, and thus 
it is possible to find a particle 3' not meeting B such that the total contribution 
to F is different at some point 3"(t) on 3' for F and F', thus producing the 
same contradiction as before. �9 

This theorem seems to justify the idea that each classical cluster contains 
only a single element. But it does not imply that for each classical universe 
there is a corresponding discrete cluster. On the contrary, one expects 
classical universes that correspond to no discrete clusters, and also discrete 
clusters that correspond to no classical universes, but examples of such 
sets--together with the appropriate proofs--must  be very difficult to find. 

5.6. An Explanation of  the Two-Slit Experiment 

Next I attempt to provide an explanation of the two-slit interference 
experiment in terms of clusters and the definition of probability in Section 
5.3. In the notation of Section 5.4, two possible outcomes P and Q of the 
experiment E are considered. As far as classical physics is concerned, both 
P and Q are equally likely. If one accepts the reasoning of Section 5.5, 
then this would mean that in the discrete framework the number of clusters 
associated with P is the same as the number of clusters associated with Q. 
Half  of the clusters in each case are associated with paths going through 
the upper slit and half through the lower slit. Thus, we retain the classical 
picture: our model contains geometric paths representing the paths of 
physical particles. Furthermore, these paths either go through the upper or 
the lower slit, just as classical physics suggests they should. The only 
difference is that we associate a cluster with each classical path. 

Is this association of clusters with classical paths and the method of  
counting the clusters reasonable? The symmetries in the experiment seem 
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to suggest that they are. But any possible proof would certainly depend on 
a much sharper formulation than I have yet attempted. 

However, if one is prepared to carry the reasoning further, then, by 
construction, the clusters associated with the outcome P can be expected 
to contain more elements than the clusters associated with Q. In the first 
case, the particle can experience a local perturbation taking it through the 
upper or lower slit. In the second case, the particle has only one choice, 
since the other would involve a perturbation giving a change in arc length 
of the particle not equal to an integral multiple of the discretization constant. 
That is, after experiencing such a local perturbation, the particle would not 
be able to get back "into phase" with itself and continue along as a discrete 
particle in an admissible set W' that is a finite variation of the original 
set W. 

Therefore, to summarize the situation: while the number of clusters 
associated with the outcome P is the same as the number of clusters 
associated with Q, the P-clusters contain more elements than do the Q- 
clusters. Thus, according to the definition of relative probabilities in Section 
5.3, the probability of P is greater than the probability of Q, in agreement 
with quantum mechanics. 

As a final point, while discussing the two-slit interference experiment, 
it may be interesting to mention the Bohm-Aharonov effect. This is a 
modified version of the two-slit experiment, which has actually been perfor- 
med. Behind the two slits, parallel to and between them, a long, thin solenoid 
is so placed that if the electron goes through the upper slit, then it must 
pass above the solenoid; if it goes through the lower slit, then it must pass 
below. According to the ideas of classical physics, the net charge of the 
solenoid is zero--thus,  there is no electrical field. There is a nontrivial 
magnetic field inside the solenoid, but, assuming that the solenoid is 
sufficiently long, the field outside must be null. Neither of the two paths 
available to the electron passes through the solenoid, so it would appear 
that the electron could not be subjected to any new influences. However, 
in this instance the classical wisdom breaks down; it is found that the 
observed interference pattern shifts on the screen. This is thought to be a 
good demonstration of the fact that classical and quantum physics are 
indeed very different. Esoteric ideas from algebraic topology are often 
brought into the analysis to help explain the effect. 

How does this fit in with the present seemingly classical explanation 
of the two slit interference experiment? If the present reasoning is followed, 
will it also predict no shift of the pattern, in conflict with the experimental 
evidence and the precepts of quantum mechanics? To answer this question, 
it is necessary to look further into the calculation associated with the 
Bohm-Aharonov effect. While it is true that the magnetic field outside the 
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solenoid is null, nevertheless the classical vector potential A is nonzero 
both inside and outside the solenoid. Now, the present theory is based on 
Fokker 's  theory, which uses the variational principle expressed in (14). As 
seen in (22), the electromagnetic part  of  this formula involves A directly, 
not the derived quantities: the electrical and magnetic fields. Thus, the 
evaluation function Jr is in fact very much different when the solenoid is 
introduced. We see then that the Bohm-Aharonov  effect can be thought of  
as being a classical effect; it simply shows that the classical vector potential 
can be directly observed in interference experiments. 

5.7. A Theorem Concerning Complex Numbers 

Whether one is prepared to accept the reasoning in the previous 
subsection or not, an obvious question remains. How can these rather vague 
estimates of  the sizes of  certain sets be reconciled with the very exact 
formulas of  quantum mechanics ? The complex-valued exponential function 
plays a central role. 

Now, if one accepts the reasoning of  Alfred Land6 (1965), then it could 
be concluded that we are already completely finished! Our discretization 
hypothesis gives, in some philosophical sense, "Duane ' s  Third Rule of  
Quantum Mechanics," as Land6 calls it, and therefore, following his reason- 
ing one arrives by default at the whole quantum theory with its probabili ty 
"ampl i tudes"  and so on. But rather than taking this drastic step, I prefer 
to prove a simple result that might have some bearing on the question of 
quantum probabilities. 

Theorem 5.2. Let u : [ - T r , ~ - ) - > [ - 1 , + l ]  be a continuous function. 
Assume that u (O) = u ( -  O) for all O c [ -  ~r, ~-), and that u (0) = 1, u (~-) = - 1, 
and u is monotone  in the domain [0, ~-). Assume also that i f J  = { j l , . .  �9 ,J2~} 
is some finite set of  numbers with ji ~ [ -~ ' ,  ~') for all i = 1 , . . . ,  2n such that 
(1 )  j i  : --ji+n for each i = 1 , . . . ,  n and (2) if ~ u(j~) = O, then ~ u(ji + ~) = 0 
for any "phase  angle" ~ c [-~-,  ~'). I f  these conditions are fulfilled, then 
u(O) = cos O. 

Proof To begin with, it is easy to see that the cosine function satisfies 
the conditions of  the theorem. Just use the standard trigonometric formula 

c o s ( ~  + / s )  + c o s ( ~  - ~ )  = 2 cos ,~ cos /S  

Thus, if ~ cos j~ = O, then 

Z Cos(j/+ ~p) = 2 cos( j /+  q~) + E  COS(--ji+n q- ~) 

where the sum on the right-hand side is from 1 to n. But this is then 

[Y~ cos(ji)] cos ,p = O• cos ,p = 0  
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Is cosine the only funct ion satisfying these condi t ions?  I will show that  the 

[~.n..ct.i.on u is uniquel~ determined at all points in [ - r r ,  ~r) o f  the form 

nrr /2  m, and thus the u n i q u e n e ~  of  the funct ion must  follow. As a first step, 
we note that  u corresponds,  by  definition, with the cosine funct ion at the 
points 0 and rr. Furthermore,  one has 0 = 2u(0) + 2u (~-) = 2u(O)  + 2 u ( O  + rr) 
for all O e [-Tr, ~-), and thus u ( O )  = - u ( c r  + 0 ) .  It follows that u ( r r /2 )  = 0. 
N o w  choose  some small e > 0, and choose the set J in the fol lowing manner :  

J = { j i , . . .  , j s , j s + l , . . .  , j s + r , . . .  ,J2s+2t} 

Here j i = 3 ~ r / 4 ,  i = l , . . . , s ,  and j i = 0 ,  i = s + l , . . . , s + t .  Since u is 
monotone ,  u( j l )  <0 .  The numbers  s and t are chosen so that l u ( j l ) +  t/21 < 
e /2s .  That  is, 

[su(3cr/  4) + s u ( - 3 c r /  4) + 2tu(0)l < e 

or, using a somewhat  more  suggestive notat ion,  

su(3rr  / 4) + s u ( - 3 z r  / 4) + 2tu (0) ~- 0 

so that u ( 3 r r / 4 ) = - t / s .  But we may add the phase angle rr /4 to all the ji 
and thus we obtain u( r r /4 )  ~ s /2 t .  It follows that s~ t ~ 21/2, so that u(~r/4) 
2 -~/2 = cos(~ ' /4) .  We can choose  e arbitrarily near  to 0, and thus we conclude 
that u = cos for the numbers  +7r/4,  and ~:3~-/4. In  particular, u has been 
determined at these points by its value at the four  known points 0, + rr /2 ,  
and ~r. 

This trick can be carried a step further. Let 

J =  { j l ,  . . . , j s ,Js+, ,  . . . , js+,,  . . . ,j2s+2,} 

be such that  ji = 77r/8, i = 1 , . . . ,  s, and j, = 0, i = s + 1 , . . . ,  s + t. Assume 
that s and t are chosen so that 

su (7~r /8 )  + s u ( - 7 r r / 8 )  + 2tu(0) -~ 0 

Thus, u ( 7 7 r / 8 ) ~ - t / s .  N o w  add ~r/8 to obtain u ( T r J 8 ) ~ - s ( l + 2 - 1 / 2 ) / 2 t .  
Therefore,  

t / s  ~- [(1 + 2-1/2)/2]1/2 = cos(Tr/8) 

and, as before,  we conclude that u = cos for the values +~ ' / 8  and • 
where only the previously known values o f  u were used in the argument.  
The values +37r/8  and +5~r/8 can be also be checked if one starts with the 
set J 'such that  ji = 57r/8, i = 1 , . . . ,  s. Clearly, this method  can be extended 
to include all O~ [-~r, 7r) that  can be expressed in the form O = nTr/2 m for 
suitable integers n and m. But such numbers  are dense in [-~-,  ~-), and 
therefore u =cos .  �9 

Does Theorem 5.2 have any relevance in our  attempts at interpreting 
the two-slit interference experiment? One could argue as follows. The 
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problem is to determine the sizes of  the various clusters associated with the 
experiment. As we have seen, the important idea is that the clusters will 
contain many elements if the various possible paths in the cluster have 
lengths that differ from one another by an integral number of de Broglie 
wavelengths. On the other hand, a cluster will contain few elements if the 
possible lengths vary by "random phases" with respect to the de Broglie 
wavelength. Thus, one could assign to each possible classical path yi in the 
experiment a "phase angle" Oi ~ [-~r, ~r), where i ~ K and K is some index 
set. Given some specific classical path yi representing a specific outcome 
of  the experiment, its contribution to the total probability of the outcome 
is determined by the number of other possible paths that have nearly the 
same phase angle as %. On the other hand, the presence of a path that is 
completely out of phase with yi does not enhance the probability of  that 
outcome. On the contrary, it has a negative effect, since we are assuming 
that the total number of  classical paths is the same for all possible outcomes. 

Thus, the only things of importance are the differences between the 
phase angles for different pairs of classical paths. That is, given two 
paths y~ and 7j, then the question of whether or not they will tend to 
enhance one another, i.e., increase the sizes of the dusters associated 
with the experiment, is determined by the differences in the phase angles 
O~- Oj. We can denote the value of this enhancement by some function 
u* : [-Tr, ~r) ~ R. 

It seems reasonable to assume that u* is continuous and that u*(O) = 
u*( -d )  by an obvious symmetry. Thus, the image of [-Tr, ~') under u* is 
compact, and therefore u* assumes a maximum and a minimum. It is 
reasonable to assert that u*(0) is the maximum and u*(~r) is the minimum, 
and u* declines monotonically between 0 and 7r. Now we can simply find 
two constants cl and c2 such that u*=  Cl+C2U, where u is a function u: 
[-Tr, 7 r ) ~ [ - 1 , + l ]  with u (0 )=  1 and u ( T r ) = - l .  

Let F = {3'1,- - �9 3',,} be some " random" set of classical paths for a 
certain outcome R of  the experiment E (by random, I mean that the phase 
angles are widely distributed). Denote by E ew) the set of  possible universes 
that are such that the particle follows one of  the classical paths in F through 
the experiment. Thus, "~e(r)C "~e(R)C "~e. Since F is random, we might 
assert that 

u ( O ' - O J ) = 0  
i j =  1 

Now let some other classical path 3 '*gF be given. The randomness of F 
would imply that ~ u(Oi-@) = 0, where @ is the phase angle of  3'*. 

Thus, if one is prepared to accept these assumptions, then the relevance 
of  Theorem 5.2 will also follow. The total probability of an outcome will 
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be determined by 

E u(~ i - o  j) 
i , j~K 

where the index set K includes all possible classical paths leading to a 
given outcome. We can write 

u(O, - Or) + u(Oj - Or) = 2 cos(agi - O r) = e'(~ e "~176 

and thus the connection with complex numbers becomes apparent. 

5.8. Observers, States, Uncertainty Relations 

It is interesting to carry the reasoning further, and to think about how 
some of the standard, apparently paradoxical, rules of  quantum mechanics 
could be explained in terms of discrete spaces. 

For example, it is often stated that one can alter the two-slit interference 
experiment by introducing explicitly the concept of an observer. One can 
imagine that light is directed at the two slits, and the observer attempts to 
see if the particle actually did pass through the upper or the lower slit. But 
as soon as these attempts become successful, the quantum mechanical 
interference effects are destroyed! Thus, it would appear that, in some 
strange way, Nature succeeds in "hiding" the details of quantum mechanics, 
thereby frustrating the aspirations of an inquiring humanity. This is cus- 
tomarily explained in terms of the principle of uncertainty. It has also been 
asserted that the will of the observer is imposed on the system, forcing the 
wave function to "collapse" and the system to enter a given state. 

Now, if one is prepared to accept the definition of relative probabilities 
given in Section 5.3, then it seems to be possible to do away with such 
complicated explanations. It is no longer necessary to philosophize about 
the relationship of mind and matter. Remember that, for us, each trial of 
the two-slit experiment represents a possible partially ordered set W. If  we 
observe that the particle definitely went through one of the slits, say the 
upper one, then this is part of the definition of the experiment. Thus, to 
calculate the probabilities for the experiment, it is necessary to count up 
the set of all possible universes that contain an observer who sees that the 
particle is going through the upper slit. The set of these universes contains, 
by definition, only experiments in which the particle passes through the 
upper slit. It is hardly surprising that the statistics for this particular experi- 
ment are different from the statistics of the other experiment in which a 
similar observer fails to detect whether the particle passed through the upper 
or the lower slit. 

I could go further into such matters, but surely it is obvious that, for 
example, an "uncertainty principle" must be associated with any discrete 
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model in physics--the uncertainty varying with the scale of the discretiz- 
ation. Rather than pursuing these questions, it seems best to refer simply 
to Land6 (1965), where such criticisms are presented in great abundance. 

5.9. Other Quantum Mechanical Experiments 

I have still failed to account for many of the phenomena often thought 
of as being central to the "essence" of quantum mechanics: for example, 
the use of spin matrices. After all, the phenomenon of "spin" is considered 
to be intimately connected with the geometric structure (the group of 
symmetries) of Minkowski space. In fact, the standard equations of quantum 
mechanics (Klein-Gordon, Dirac, etc.) are generally thought of as being 
nothing more than simple consequences of this group of symmetries. Now, 
in principle, it would not seem to be appropriate simply to assume that the 
same symmetries hold in our discrete spaces. After all, Minkowski space--a 
perfectly homogeneous space, and thus empty, according to the general 
theory of relativity--can at best be used to calculate the behavior of a single 
quantum mechanical system in an otherwise empty, and thus highly sym- 
metric, universe. As we have already seen, this abstract idea of "emptiness" 
cannot be sensibly carried over to the discrete description. But this should 
not deter us from expecting that the quantum theory--with it's "spinors" 
and so forth--can also be applied within the framework of discrete spaces. 
After all, even in the usual nonsymmetric, continuous geometric framework 
(the considerations of cosmology alone invalidate many of the symmetries) 
it is considered to be sensible to continue to apply the standard equations 
of quantum field theory. Certainly the general framework of discrete spaces 
allows enough latitude for many such developments. But for the present it 
may be worthwhile to speculate briefly and simply on one or two very 
typical quantum mechanical experiments. 

5.9.1. Atomic Structure 

Perhaps the most basic, and historically the most important, "experi- 
ment" was the structure of the atom. The attempts to understand how the 
negatively charged electron can be stably bound to the positively charged 
proton in a hydrogen atom, giving very sharply defined energy levels, led 
to the original formulation of quantum mechanics. It is possible to refer to 
the method of reconstructing the Schr6dinger equation from the path 
integrals, and thus to claim that the atomic structure can be explained using 
the ideas of Section 5.6. But another effect may become important, depend- 
ing on the details of the way we choose to define our discrete model. If it 
is imagined that the discretization is such that points along the particles 
occur only once every de Broglie wavelength, then we no longer have an 
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electron "circling" a proton, but rather an electron that appears only 
sporadically. If  these sporadic appearances form a static pattern, then it 
might be expected that the atom is stable; if, on the other hand, the pattern 
tends to move (rotating, etc.), then this will result in radiation of energy 
from the system, just as would be expected in classical electrodynamics, 

When thinking about this effect, it might be remarked that it is not 
necessary to adhere rigidly to the definition of "distance" as given in Section 
3.7. Here is a possible alternative definition. 

Definition 1. Let P ~ W, and Pi, Pi§ be as in Definition 1 of Section 
3.7. The distance between pi and P~+I can now be defined as the largest 
number n such that there exists a chain of positions p~ -- Co < C1 <" �9 �9 < (7, = 
p~+~. Then an alternative to Definition 1 of Section 3.7 is that P is proper 
if all adjacent elements of P are the same distance n apart. 

Now one might define a particle to include not only the elements 
p = {pi} c W, but also the positions along such maximal chains. Thus, we 
could, even with a seemingly coarse discretization, still have a very fine 
structure. However, it hardly seems worthwhile to pursue such further 
speculations here. 

5.9~ Light 

According to the theory of quantum electrodynamics, the propagation 
of photons of light should be dealt with similarly to the propagation of 
"normal"  massive particles. But in the action-at-a-distance formulation of 
classical electrodynamics, the concept of "light" simply does not exist! How 
can these two completely contradictory viewpoints possibly lead to similar 
theories ? 

At best we can say that "light" expresses some relationships between 
different particle paths in the model. Electromagnetic waves arise in a 
complicated way, which can be seen in the correspondence between the 
Maxwell theory and the action-at-a-distance theory, which is demonstrated 
in Section 2. Now, the present ideas are certainly classical, and so it would 
follow that we should also try to explain "light" purely in terms of  the 
Fokker model. The "wave" properties of light have perhaps been demon- 
strated, at least through the classical correspondence between the Fokker 
and Maxwell theories. What about the "particle" properties in the so-called 
"wave-particle duality"? 

Imagine an atom in an excited state losing energy and dropping down 
to its ground state, thus emitting a photon of light. Now, according to the 
classical picture, the light waves would gradually spread throughout space 
in a spherical pattern, becoming weaker and weaker. They might eventually 
be completely absorbed by extremely tiny movements of the many particles 
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in the future absorbing universe. Thus, the original pulse of energy will 
become dissipated and absorbed by many other particles: the universe "runs 
down," so to speak. 

The quantum picture appears to be completely different. Here we have 
the pulse of energy remaining whole, although, in some statistical way, 
wavelike. It travels randomly into the future universe, and then suddenly 
it collides with a single particle, thus annihilating itself and giving all its 
energy to the new particle. 

But are these two pictures really so different? The problem is that in 
the classical picture the energy is supposed to become dispersed and 
dissipated among many particles. In the Maxwell theory this is certainly 
the case, but is it also true in Fokker's action-at-a-distance theory? It seems 
that even in the completely classical (i.e., continuous, not discrete) case, 
Fokker's theory might predict photons. For example, Hoyle and Narlikar 
(1974) show how spontaneous atomic transitions might be explained in 
terms of  effects in the future absorbing universe. That is to say, it might be 
sensible to weaken some of the assumptions in Section 2.9 to allow possible 
small advanced electromagnetic fields. These might be explained in the 
following way. Imagine first that the energy given off by the atom is 
distributed among many other particles in the future universe. This situation 
gives an extremum to Fokker's expression (14). Assume, for the sake of 
argument, that the energy is distributed among the particles p~, P 2 , . . . ,  pn. 
Now, according to Section 2.7, the principle of conservation of energy holds 
also within the theory of  action at a distance. One might imagine a small 
variation of the particle paths, giving, say, p~ slightly more energy and P2 
slightly less, or vice versa. Assuming that p~ and P2 are widely separated--and 
therefore " independent"  of one another-- then it would seem plausible to 
assert that such variations should change the value of (14) more or less 
linearly, and thus assigning slightly more energy to one particle than another 
would lead to a "bet ter"  value for (14). This is similar to the discussion in 
Section 2.8, and we conclude that it may be possible that coherent pulses--  
corresponding to photons of  light--resulting from "kinks" in the paths of 
typical solutions to (14) could arise naturally even in the classical Fokker 
theory. 

5.10. Momentum and Energy As Operators 

Much of the formalism of quantum mechanics follows by the standard 
quantization procedure: one begins with a formula from classical physics, 
then partial differential operators--multiplied with constants that are purely 
imaginary numbers--are  substituted for the momentum and energy terms 
in the formula. There results an equation between complex differential 
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operators. Solutions to the equation--smooth complex functions--are then 
the "probability amplitudes." 

Now it would seem that this formulation in terms of complex differential 
operators is, on the face of it, irreconcilable with a discrete description. 
One may attempt to approximate a differential structure with a sufficiently 
fine discrete space, or one could even contemplate retreating to a classical 
probability space, thus mixing discrete and continuous mathematics. But 
such methods seem to be inappropriate. Why seek a discrete description of 
the physical world in the first place? Surely the reason must be that the 
continuous description is unsatisfactory, and thus it is counterproductive 
to look for a complicated discrete theory that is, in the end, simply equivalent 
to the original continuous description. 

The way out of this dilemma is to base things on the Feynman path- 
integral approach to quantum mechanics. Feynman and Hibbs (1965) show 
how the operator formulation of quantum mechanics can be derived from 
path integrals. Thus, it would be possible to generalize our explanation of 
the two-slit interference experiment to include all possible path integrals. 
Indeed, modern treatments of quantum field theory, going beyond the 
established ideas of quantum electrodynamics, are increasingly expressed 
within the "language" of the path integral. I will deal further with these 
questions in the next section. But for the moment, where we are concerned 
with questions of interpretation, it is appropriate to consider just how the 
path integrals could arise in a discrete framework. 

Recall that, in principle at least, the path-integral approach is fully 
equivalent to the operator approach. One obtains the same functions in 
each case, representing the probability amplitudes for quantum mechanical 
processes. But the point is that in practice these probability amplitudes are 
difficult or impossible to calculate. The path-integral approach involves 
finding approximate solutions, which consist of sums over various types of 
"Feynman diagrams." Each given Feynman diagram--while arising from 
a certain method of thinking analogous to the Taylor expansion in mathe- 
matical analysis--has the appearance of a definite physical process in the 
normal Minkowski space. For example, the photon self-energy diagram in 
quantum electrodynamics involves a photon arriving at a given point in R 4, 
creating an electron-positron pair there, which later collapses to create a 
further photon at some different point in R 4. 

How seriously is one to take the physical process that corresponds with 
a given Feynman diagram? The conventional attitude in mathematical 
physics seems to be that the Feynman diagrams have no real relevance to 
the problems of quantum field theory; although they are useful for practical 
calculations, they have little to do with possible solutions to the operator 
equations, which are the essence of the exact theory. But it seems that a 
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more pragmatic approach is called for. The Feynman diagrams do, in fact, 
give a good description of  physical reality. Furthermore, we can plausibly 
interpret the calculations that result from the use of Feynman diagrams in 
terms of our discrete spaces; the operator approach seems to defy all 
attempts at a similar interpretation. 

According to the ideas presented here, the statistical effects of  quantum 
mechanics should be thought of  as arising from the properties of a large 
ensemble of  possible "universes" ~-, which is the collection of  all possible 
discrete partially ordered sets satisfying the various axioms given here. Now, 
I have, admittedly, specified that "particles" should be infinitely long. This 
axiom, along with the others as well, no doubt would have to be changed 
to allow short "segments" of  particles that occur in creation and annihilation 
diagrams. But still, the idea should be clear. As in the case of  the two-slit 
experiment, different possible "paths"-- represent ing definite elements of 
-~--all contribute to building the probability of  the experiment as a whole. 
The difference in the general case is that rather than just considering different 
paths for a single electron, one now considers all possible Feynman 
diagrams. Thus, each Feynman diagram represents, in the present model, 
a whole class of possible universes contained in the total set -~. A diagram 
such as the photon self-energy diagram results in a physical process that is 
indistinguishable from the same process, but without the pair creation and 
annihilation loop. Thus, according to the ideas of Section 5.5, both of these 
processes occur in different universes that belong to a common cluster. In 
this way one will find that the probabilities for the different outcomes of  a 
given experiment can only be calculated by summing over all possible 
Feynman diagrams. 

6. DISCRETE SPACES IN QUANTUM ELECTRODYNAMICS 

6.1. The Role of Renormalization Theory 

Undoubtedly the main reason for considering discrete structures in 
physics is that there are technical problems in certain field theories; some 
of  the theories that have been proposed do not seem to admit a "renormatiz- 
ation theory" similar to what is used in quantum electrodynamics. In such 
cases it has often been found possible to impose a renormalization by "brute 
force," using the technique of  replacing R 4 by Z 4. Now, it seems that much 
more can be expected of a discrete formulation. Nevertheless this should 
not deter us from asking whether or not our discrete framework does in 
fact allow the solutions to such problems. 

For example, the Feynman integral involves a sum over sets of possible 
particle paths. This has created, in the framework of continuous spaces, 
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immense mathematical  difficulties. But in our discrete spaces it seems 
obvious that one can, in principle at least, reduce things to a finite sum, 
and thus the FeYnman integral could regain the simple and intuitive motiva- 
tion it originally had. 

Now there exists in fact a version of renormalizati0n theory for quantum 
electrodynamics based on a discrete action-at-a-distance model. This theory 
seems to me to be elegant and perhaps capable of more general application. 
Thus in this section I shall briefly describe the theory, following the develop- 
ment in Hoyle and Narlikar (1974) and referring to Feynman (1962). I will 
only sketch the theory to a sufficient extent to show the possible relevance 
of Observation l, below. I presume that this observation is equally relevant 
to other possible renormalization theories (those involving Yang-Mills  
theories, etc.). 

6.2. Feynman Integrals 

Let a, b c R 4. Assume that a particle passes through the point a. (Again, 
particles are paths in R 4, but now the paths are not necessarily strictly 
timelike.) What is the probabili ty that the particle (or at least some particle 
indistinguishable from the original particle) also passes through b? The 
Feynman integral provides the answer, and thus it can be considered as 
giving a kind of conditional probability for problems of this type. 

The basic idea for path integrals was apparently first proposed by 
Dirac. He posed the question, why are variational principles so important 
in physics? The models used in physics are often of the following form. 
Some mathematical  system is given, and the system can be described in 
terms of a certain class of  possible "paths"  ~. Some evaluation function 
S : ~ ~ R is given for this set of  paths, and one specifies that the actual path 
taken is an extremum with respect to this function. 

Dirac's idea was to suggest that this should be translated directly into 
the framework of the quantum theory, as it was then understood. Rather 
than taking the real function S : ~ -~ R, one should take a complex function 
�9 : ~ - ~  C. The most logical choice seemed to be simply ~ = exp(27riS/h), 
where h is Planck's constant. Now, according to the quantum philosophy, 
the result of  the "exper iment"  involving the points a and b is no longer 
the assertion that a particle followed some given path from a to b. Rather, 
an experiment simply determines whether or not a particle appeared at a 
and a similar particle also appeared at b. The "probabil i ty" of  this occurrence 
is calculated to be 

[2~iS(y)~ 
~', exp,-  -~ ) (73) 

3,e{all pa ths  f rom a to b} 

Each of these terms is a "probabil i ty ampli tude" for a given path, and thus 
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the "probabil i ty" has something to do with the set of  all possible paths, 
rather than individual paths,  as is the case in classical physics. Why does 
the "classical" path, representing the solution to the variational problem, 
give a result with high probabi l i ty?The answer is that in the neighborhood 
of an extremum (given that S is reasonably smooth, etc.), many paths have 
almost the same value under the function S. Thus, under the complex 
exponential, these paths tend to add up to give a large sum. 

Of course in the usual geometry of R 4 there are uncountably many 
possible paths, so it is not clear how one should define the sum in this 
expression. It is possible to replace the summation symbol with an integra- 
tion symbol, but perhaps this only serves to confuse matters. A number of 
researchers ha;ee attempted to give meaning to these ideas (see, e.g., Glimm 
and Jaffe, 1981), but in the end they have been forced to abandon this 
simple geometric idea of  Dirac's and instead to formulate everything in 
terms of more complicated and less intuitive geometric frameworks. 

Feynman was led to consider a "perturbation series" involving known 
solutions to the famous Dirac  equation 

y~ (iV~ - eA~)~ = m~ (74) 

Here # = 1,. : . ,  4, and the y ,  are given by 

(1 ~ o,) (o o) ')/4 = and Yi = , i = 1, 2, 3 
- -  O~i 

where the o'i are the 2 x 2 "spin matrices" and the l 's in the expression for 
')/4 are the 2 x 2 identity matrix. �9 is a 4-vector at each point of R 4, m is 
the mass of the particle, V is the divergence, and A is the "vector potential" 
of classical electrodynamics. 

In fact, Feynman only needed the "free particle" solution, in which a 
particle appears first at some point a ~ R 4 and then at another point b c R 4 
and it experiences no electromagnetic interactions underway. He treats this 
solution in Feynman (1962, p. 81, Seventeenth Lecture). There he calculates 
the so-called "propagation kernel" K+(2, 1) for a free particle to travel from 
point 1 to point 2, and obtains 

f e i(Et-P'X)d3p 
K+(2, 1)= (Epy4-p"  y + m )  2Ep(2~)3 (75) 

Here the point 1 has the coordinates (x~, t l ) c  R 3 •  R = R 4 and point 2 has 
the coordinates (x2, t2). Then x = x2-x~ c R 3 and t = t2-t~.  The integration 
is o v e r  R 3 and the variable of integration p is thought of as being three- 
dimensional "momentum."  Here Y = (Y~, Y2, Y3), i.e., a fixed vector whose 
components are matrices. Finally, Ep = (p2+ m2)~/2 is the "energy" associ- 
ated with the particle. Feynman reduces this integral to another expression, 
which is, however, itself equally complicated. 
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What is the meaning of the propagation kernel? To answer this question, 
it is necessary to first ask, what is the meaning of the probability amplitude? 
The probability amplitude is a function xI~': G 4 ~  C 4 associating with each 
point of some region G 4 c R 4 a complex 4-vector that is a solution of the 
Dirac equation. Finally, the probability that an "observation" of the system 
will result in the particle being observed at a given point is the product of 

with its transpose: ~*  x ~ .  Now let us imagine that two hyperplanes R 4 
and R 4, are given, where t < t' and 4 R s  = {(Xl . . . .  , x4)  c R 4 : x 4  = s}.  Imagine 

4 4 further that an appropriate function xp is given on R tuR , , .  Then the 
definition o f  �9 can be extended to include the space between R 4 and R 4, 
by using the prescription (Feynman, 1962, formula 16-1) 

�9 (2)-- I d3x,- I ,,+(2, l')x, (76) 

where 2 is a point between the hyperplanes, 1 is a point on the hyperplane 
R~ with coordinates xl,  and 1' is a point on the hyperplane R 4, with 
coordinates Xl,. This prescription works for a free particle. 

The case of a particle that is not "free," but rather is moving in an 
electromagnetic field, is extremely complicated. The fact that the particle 
produces its own field, which becomes "infinite" at the particle, leads to 
further difficulties. (Also, the fact that a particle produces its own field 
shows that the free particle case, strictly speaking, cannot arise.) There is 
a huge amount of current research on these questions. 

Nevertheless Feynman was able to find a simple and practical method, 
which also works well in the case of non-free particles. His idea was to 
associate (74) with the propagation kernel. We can write, following Hoyle 
and Narlikar (1974), 

S(y) : So(y) - f V(y(x, t)) dt (77) 

where S is the classical action along a path y that leads through a region 
with an electrical potential V. Here So stands for the classical action that 
would be experienced along the path if there was no electrical potential. 
Then, in analogy to (73), one can write 

_ ( 2 ~ r i S \  [2~i( (Vd t ) ]  Kv(2, l) = expk--h-) = z expk-  kS0- j (78) 

Here, Kv(2, 1) is the propagation kernel for the particle to go from the 
point 1 to the point 2 through the electrical potential V and, as in (73), 
the sum is over all possible particle paths from 1 to 2. Next one 
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exPands the exponential function as a Taylor series, obtaining 

K "~ {2~riS~ Vdt+(hf Vdt)2+ ''. ] (79) v : L expk-- -~-  ) h J 

Now the first term is associated with Ko(2, 1). The second term can also be 
expressed in terms of the free particle propagator if we reason as follows. 
The sum in  equation (79) is a sum over all possible paths from 1 to 2. On 
the other hand, the integral over t is from tl to t2. Therefore, it is sensible 
to consider each path y as being composed of two paths yl and Y2. The 
path ~/1 is a path from the point 1 with coordinates (x~, q) to an intermediate 
point 3 with the coordinates (x3, t3), where tl < t3< t2. Then y2 is a path 
f rom the point 3 to the point 2. [Note that it is being assumed here that 
y4(r) < y4(s) for r <  s.] Thus one can write 

-r, expk-- -) 

: - ~ f  f Ko(3,1)v(a)Ko(3,2)d3x3dt3 (80) 

This term in the Taylor series is illustrated by means of the so-called 
"Feynman diagram" of first order, as shown in Figure 10. The idea is that 
this term in equation (79) actually has some physical significance. One 
imagines that the particle travels "freely" from 1 to 3, then at 3 it is deflected 
with some "probability" (or "Probability amplitude") by a photon of light, 
and then it travels from 3 to 2. 

This philosophy is carried further; one looks at more and more compli- 
cated Feynman diagrams, and the probabilities are calculated using (76), 

2 

v(3) 

Fig. 10 
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but with the free particle propagators replaced by (79), truncated after the 
first few terms. Or often, only certain classes of terms are considered, 
depending on various intuitive ideas (see especially Mattuck, 1976). In 
addition, the electrical potential V is replaced by the classical electromag- 
netic "vector potential" A, and Dirac matrices are inserted at appropriate 
points. Everything works well, except for the unfortunate but hardly surpris- 
ing fact that most diagrams lead to divergent integrals. These are diagrams 
with self-interactions, e.g., Figure 11, where the photon of light is considered 
to be exchanged between the points 3 and 4 along the particle path. The 
integration of this term must allow for the approach of 3 arbitrarily near 
to 4, and thus one sees that, once again, the fact that pointlike particles 
have infinite fields is causing difficulties. But Feynman found a way to 
circumvent these difficulties by means of the "renormalization theory," a 
version of which I will discuss below. 

These ideas have often been criticized by mathematical physicists, who 
are unconvinced that the "perturbation series" has much meaning. 
Nevertheless, the Feynman integral approach works; it provides simple 
rules for calculating the results of real experiments, and the results have 
been verified to the highest degree of accuracy in many experiments. 

Much research today is directed toward a search for a theory that gives 
true solutions to the Dirac equation, but another approach is possible. Why 
is it necessary to hang on, at all cost, to the notion of space in terms of a 
continuum? We have seen that this idea causes great difficulties, not only 
in quantum electrodynamics, but also in classical electrodynamics and in 
general relativity. Thus, it is strange that the view has become prevalent 
that diverging integrals are a special problem in quantum field theory which 
can be circumvented by some sort of "cleaning up" process (the work of 

2 

Fig. 11 
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Weierstrass is often quoted in this connection), affecting the basic methods 
of mathematical analysis. 

Indeed, there is no need to look for "mistakes" in the basic definitions 
of analysis, as they are understood by most mathematicians. The question 
is simply whether or not these definitions are appropriate for application 
in physics. Thus, Feynman's methods should not be dismissed as being 
nothing more than vague mathematical approximations. On the contrary, 
the best approach might be to start with the Feynman diagrams, and then 
to see what reasonable (and presumably discrete) mathematical models are 
possible. 

6.3. Hoyle and Narlikar's Renormalization Theory 

I will now sketch the argument that shows how the integrals in the last 
subsection diverge and how they can be altered so that they are in fact well 
defined. This alteration reflects the kind of discretization that has been 
discussed in the previous sections and therefore it seems likely that any 
attempt to give meaning to an expression like (73) in terms of discrete paths 
would be likely to make use of this renormalization theory. I will consider 
only the simplest self-energy diagram: that in which a single photon is 
emitted and then reabsorbed by a single particle. The exposition in Hoyle 
and Narlikar (1974) will be closely followed. 

To begin, it is necessary to recall from Section 2 that the Li6nard- 
Weichard potential generated by the particle is given by equation (13). 
Thus, following the philosophy of Section 6.1, it would seem that the 
electrical potential V in the appropriate terms of equation (79) should be 
taken to be 6(s423), where the four-dimensional Dirac &function is as in 
Section 2 and it is assumed that the Feynman diagram is such that the 
particle starts at point 11 travels to 3, where it emits a photon, then to 4, 
where it reabsorbs the same photon, then continues on to the point 2. 

In treating these ideas, Feynman (1962, p. 120, 24th Lecture) begins 
by taking the one-dimensional Dirac 8 and writes it in the following way: 

g(X)=f+ ~176 d w _  ~ (81) 

He then asserts that this is a representation of the g-function (and thus the 
photon with which it is associated) in terms of both positive and negative 
frequencies. But, following his reasoning, a photon can only have positive 
energy. Thus, the "negative frequencies" should be disregarded, and we 
should instead take the new Dirac g-function 

[ +~ exp(-  iwX) dw 
g + ( x )  - -  - ( 8 2 )  

.t0 
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which has no negative frequencies. Then the four-dimensional 6-function 
with positive frequencies 6+(s].3) should be defined by means of an equation 
similar to (19) in Section 2. 

The formula for 3+ used by Hoyle and Narlikar (1974, Appendix 3), 
formula (102), is 

I 1 d3K 
6+(s],3) = 47ri ~-~ exp[-iklt4- t3] + ik(x4-x3)]  (2~.)3 (83) 

This is an integral o v e r  R 3. As before, the points 3 = (x3, t3) and 4 = (x4,  t4) 
in R 4 are of interest. Also, K = Ikl. The part of their formula (133) for the 
relevant term in the perturbation expansion for the case of a particle with 
vanishing spatial momentum can then be written 

-ie2ffK+(2,3)y,K+(3,4)y~6+(s~,4)Uoe-im'4dX3dX4 (84) 

The Yi, i = 1 , . . . ,  4, are the Dirac matrices, and one is to sum over them. 
The integration is over the four-dimensional slab between the two three- 
dimensional hyperplanes R 4, t = tl, t2. 

Now, it is well known that this integral "diverges" and is thus ill 
defined. Feynman's renormalization theory involves altering the definition 
of 6+ so that the integral is "cut off" at high "frequencies." This approach 
certainly works. The main result is that, when considered as a whole, the 
"perturbation series" does not depend upon the form of this cutoff. What 
is more, the modified version of 6+ also produces a convergent perturbation 
series. But do these modifications to 6+ have any meaning in terms of an 
underlying geometric model? 

Hoyle and Narlikar's renormalization theory also involves a 
modification to 6+, and thus it is very similar to Feynman's approach. 
However, instead of considering a "frequency" cutoff, they imagine that 
there is a minimal possible interaction distance e, so that if the points 3 
and 4 have a vanishing Lorentz separation (thus allowing the exchange o f  
a photon), and if they approach each other more closely than e, then there 
is no longer an interaction, and 3+ is null. Thus, the integral in (84) is to 
be carried out subject to the restriction that 

It3 - t41 > e (85) 

for some small constant e > 0. 
In the case of free particles with nonzero spatial momentum, they take 

the cutoff rule given by 

i i 
I X 3 -  X41 ~ epi/m (86)  
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for i =  1 , . . . , 4 ,  and pi being the components  of  the four-dimensional 
momentum of the particle. They obtain a renormalization theory similar to 
the usual one, with a "renormalizat ion constant" given by 

3e  2 
- - I n ( m e )  (87) 
2~- 

where e is the charge and m is the mass of  the particle. The details can be 
found in Hoyle and Narlikar (1974). In particular, it should be noted that 
both the mass and charge renormalization follow from the same principle. 
The spatial cutoff given by (86) transforms in the same way as the momen-  
tum, and is thus independent  of  the coordinate system. 

Hoyle and Narl ikar base their theory on the idea of paths consisting 
of  many short "null segments" and use this idea to justify the cutoff rule 
(85). They also mention the idea that this cutoff could have something to 
do with the gravitational Schwarzschild radius of  the particles, although 
this seems to play no essential role in their theory. I f  indeed the concept 
of  a manifold can be used on such small scales of  distance, and furthermore 
if the particles create tiny "black holes" whose radius is of  the order 10 40 cm, 
then it is difficult to see how the idea of particles consisting of null segments 
of  about this length can be maintained. 

I certainly do not claim to have a better picture, nor do I claim to have 
an adequate understanding of  the calculations themselves. What relevance 
can a long and complicated calculation, involving many integrals and 
simplifying assumptions regarding those integrals, have to a finite com- 
binatorial model? It seems clear that a true renormalization theory based 
on a discrete model of  space-time has yet to be developed. But still, given 
these limitations, it might be interesting to point out a certain structure in 
the present model that does correspond to Hoyle and Narlikar 's  renormaliz- 
ation condition (86). 

Recall Definition 1 of  Section 5.9. We are given two adjacent points 
P~, Pi+~ on the particle p c  W. Then a maximal chain of  positions p~ = Co< 
C1 < �9 �9 �9 < Cn =P~+l between pg and pi+~ is considered. The vector Pi+~ -P~ 
in R 4 is proport ional  to the 4-momentum of  the particle P (this follows 
from Theorem 3.1). Now it might be considered that the chain {C~} of 
positions between p~ and p~+~ is in some sense the smallest subdivision of 
this interval, and the observation we now make is that if each C~ is associated 
with a point in R 4 ( a s  in Section 3.8), then the vector Ci+l - Ci in R 4 is on 
average also proport ional  to the 4-momentum of  the particle P. 

Observat ion 1. Let Pi, Pi+~ and qi, qi+i be two points in a set W satisfying 
our general assumptions. In particular, assume that W, together with the 
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set of  positions of W, has an embedding in R 4 that is nearly order-preserving 
(with respect to the Lorentz metric), and assume further that the density 
of positions near the images of pj, qj, where j -- i, i+  1, is nearly constant 
(for ease of  notation call these points of  R 4 simply pj, qj also). Assume that 
p~ <p~+~ and q~ < q~+l and that the Lorentz distance from p~ to P;+1 is equal 
to the Lorentz distance from q; to q H -  Let p~ = Co< C~ < - . - <  Cn =pg+~ 
be a maximal chain of positions from p~ to p;+l and let q~ = C ~ <  C~ < .  �9 �9 < 
C'~ = q;+~ be a maximal chain of positions from q~ to q~+~. Then n ~ m and 
the points So, s ~ , . . . ,  s, associated with Co, C ~ , . . . ,  C, run in nearly a 
straight line from p~ to p;+~. The same holds for the positions between q~ 

and qi+l. 

Justification. It suffices to consider the case that Pl = (0, 0, 0, 0), P2 = (0, 
0, 0, 1), and then q~ is in a more general position. Now it is reasonable, 
from the point of  view of symmetry, to assert that the points associated 
with Co, C 1 , . . . ,  C, lie nearly along the straight line from p~ to P2. Let 
xI ) ' :R4~  R 4 be a Lorentz transformation taking q~ to p~. Now, �9 produces 
a different faithful representation of W in R 4 that no longer satisfies the 
cosmological hypothesis (Section 3.8). But since the original embedding of 
W in R 4 satisfies the cosmological hypothesis, it follows that, for example, 
the point ~(s0) of  R 4 c a n  be associated with a nearly Lorentzian cone in 
R 4, representing the cone Co of W under the transformed embedding of W 
in R 4. More generally, the density and distribution of the points of  R 4 

associated with cones of  W in the neighborhood of pj, q~ can be expected 
to be invariant under q~ since such "Lorentz mappings"  as q~ preserve 
Lesbegue measure o n  R 4. Thus, a maximal chain of  positions between qi 
and qe+~ is represented by a maximal chain of  positions between (0, 0, 0, 
0) and (0, 0, 0, 1), with the same density and distribution of positions in 
R 4 as under the original embedding. Hence the Observation follows. 

One point upon which Hoyle and Narlikar do not dwell is the question 
of whether or not the "probabil i ty ampli tudes" they use- - tha t  is, the limits 
of the (convergent) perturbation ser ies--do in fact define a function that 
satisfies the Dirac equation. But for this it is only necessary to use the 
standard technique used by Feynman (1962, Fifteenth Lecture): one shows 
that the propagat ion kernel K A, which is defined as the sum of the terms 
in the series that do not include self-interactions, satisfies the inhomogeneous 
Dirac equation [Feynman (1962), (15-9)]. But then, since Hoyle and 
Narlikar use a distance cutoff, it is possible to generalize K A to include 
self-interactions. We can treat each such self-interaction as if it were an 
external potential, and thus we arrive at the inhomogeneous Dirac equation 
also in this case. 
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Of course this theory is not gauge invariant--the minimum interaction 
distance e plays an important, though unobservable, role. Thus, the theory 
cannot claim to provide a solution to the axioms of  the conventional field 
theory. But our basic assumption, namely that space is discrete, is already 
a denial of  gauge invariance. Therefore, following this reasoning, one can 
say that if the reader is prepared to accept that discrete mathematics is a 
reasonable framework for theoretical physics, then the idea of gauge invari- 
ance--as  a fundamental principle of physics, rather than simply as an aid 
to the calculation of certain quantities in quantum mechanics--should no 
longer be strictly adhered to. 

7. CONCLUSIONS,  PROBLEMS,  AND FURTHER SPECULATIONS 

7.1. Connections with Current Research 

Any reader who has reached this point will have long since recognized 
that the ideas presented have very little to do with current research in 
theoretical physics. The treatment of  gravitation theory was, for the specialist 
in the subject, very basic. I have neither touched on quantum gravity, and 
the hopes that subject has of  establishing a connection between the theory 
of  general relativity and quantum mechanics, nor on cosmology, except for 
a few simple criticisms. Also, the discussion of  quantum mechanics men- 
tioned nothing more than a very small number of  the oldest and most 
established results in that subject. I have not dealt with the lattice theories 
that are currently being used. 

But such investigations are the proper domain of specialists. It is unclear 
whether a discrete formulation is in each case possible or appropriate. 
Nevertheless, it is interesting to speculate on how these ideas might be 
applied. 

7.1.1. Elementary Particle Physics 

The simplest and most immediate thought is that discrete geometry 
might be of  particular relevance in the theory of the elementary "particles" 
(that is, the phenomena investigated in high-energy collisions between 
"ordinary"  particles). For example, two electrons can be made to collide 
with one another head on. If  the collision is energetic enough, a shower of 
new particles is created. The pleasant idea that this shower represents the 
"elementary" constituent parts of the original electrons is soon dispelled 
by the observation that the shower can itself contain two or more electrons. 

A great deal of effort has gone into the search for more and more 
"elementary" particles over the last 50 years. Certainly no one could claim 



Discrete Model for Classical Electrodynamics 1251 

that the search has come to an end. At present, though, most people seem 
to agree that the electron is a truly elementary particle. There is a great 
flood of particles that, while at first thought to be elementary, are now 
thought of as resulting from combinations of simpler, though unobservable, 
particles--the "quarks." Could the quarks also be "truly" elementary parti- 
cles? Many people today seem prepared to pursue the hypothesis that this 
is in fact true. In any case it would appear that, just as the discovery of 
"atomic" physics showed that the atoms of the 19th century were not really 
"atomic" after all, so many of the elementary particles of the 20th century 
are also not "atomic." 

Consider once again a collision of two electrons. If we accept the 
picture of "truly" elementary particles as being discrete paths, then such a 
collision would be represented by two discrete particle paths coming 
together. The "shower" of particles would be a great many short paths, or 
even single points in the discrete structure. (Of course we must generalize 
our definitions to allow paths that are not necessarily infinitely long.) Now 
it seems obvious that some combinations of discrete paths will be more 
likely than others with respect to the underlying variational principle. Thus, 
the discrete structure could explain why simple combinatorial rules have 
been found to apply. It would also explain why we would never come to 
the end of the search for the "elementary" particles: higher and higher 
energies would allow ever new combinations of the points on the paths. 

7.1.2. Cosmology and "Local" Physics 

Recently much has been made of possible connections between certain 
cosmological speculations and some properties of the "elementary parti- 
cles." For example, the idea has often been expressed that perhaps the 
particles exhibit certain properties that might have something to do with 
an "evolving" universe. Now it is unclear to what extent these ideas could 
be carried over into a discrete framework. On the other hand, every action-at- 
a-distance theory involves, by its very nature, a description of local 
phenomena in terms of a global formulation. Thus, a changing or evolving 
universe would generally imply changing local laws. 

One area where this question of possibly changing local laws might be 
best investigated is gravitation. If we accept the reasoning of Section 4, 
then gravity could be explained as a complicated statistical effect. In par- 
ticular, the relative densities of nearby and (cosmologically) distant matter 
would play an important role in determining the gravitational constant. In 
an evolving universe, these relationships might change, and thus the gravita- 
tional constant might change. But in the absence of any empirical evidence, 
it hardly seems worthwhile to pursue such thoughts. 
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7.2. Some Further Problems 

7.2.1. Four Dimensions 

Can the four-dimensional structure of  space-time be explained in terms 
of  the properties of  discrete, partially ordered sets? This is the most  impor- 
tant question that can be posed when it comes to discrete methods in physics. 
A satisfactory answer would enable us to do away with the idea of proper  
representations of  partially ordered sets in R 4. Thus, we would be able to 
find a more natural basis than that given in Section 3 for the association 
of geometrical and combinatorial  ideas. 

The examples of  Section 3 show that four-dimensionality is a special 
property,  characteristic of  only a special class of  discrete, partially ordered 
sets. How is it possible to characterize four-dimensionality for such discrete 
sets ? 

There are a number  of  ways of defining the "dimension"  of  a given 
space. Perhaps the most appropriate  method could be based on the results 
related to Example 1 of  Section 3.3. It was shown there that if a partially 
ordered set K is geometrically n-dimensional,  then it can contain no subset 
of  the form Wn+l. (Recall that W~ contains n + 2  n elements. The first n 
elements are all unrelated to one another in the ordering, while the last 2 ~ 
elements are either below or unrelated to these first elements. All 2" combina- 
tions are represented here.) We can now take this result as our definition 
of  dimension. Thus, a set W could be defined to be n-dimensional if it 
contains W,, but not W,+~, as a subset. Is it possible to prove that any set 
that is n-dimensional according to this definition also has a faithful rep- 
resentation in R"? 

Another  idea is to observe that not all discrete, partially ordered sets 
satisfy the variational principle given by (47). In addition, the considerations 
of  Section 4.13 would seem to involve restrictions on the classes of  sets that 
are to be allowed. Could it be that in some subtle way these restrictions 
also involve a condition on the dimension? 

7.2.2. Quantum Mechanics 

The treatment of  quantum mechanics in Section 5 centered on the idea 
of clusters of  sets. On the other hand, it was asserted that each experiment 
would, as in classical physics, involve a tremendous amount  of  detail. All 
of  these details would contribute to the determination of  the statistical 
properties of  the experiment. 

Thus, it would be a natural idea to investigate the details of "discrete" 
experiments within the f ramework of classical physics. As an example,  one 
might consider the passage of  a pointlike particle through a crystal consisting 
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of a regular lattice of pointlike particles. The discretization would consist 
of imagining that these particles only appear for a moment at discrete 
intervals of time. At each of these appearances the particle would experience 
a deflection, say, in accordance with an analog of the Coulomb law. A first 
approximation might be to consider just the "test particle" to be discrete 
and the particles of the crystal to be normal continuous classical particles 
in R 4. What could one say about the classical probabilities of such a system? 

7.2.3. Spin and Complex Numbers 

It is thought that the connections among the Dirac matrices, spin, the 
use of complex numbers in physics, and the basic structure of physical 
space are subtle and profound (Wells, 1979). In particular, the well-known 
connection between spin and statistics needs explanation. Certainly we have 
not as yet dealt with these concepts in any very satisfactory way. At best 
we could remark that the range of the function F in equation (47) could 
be taken to be some appropriate set that might be more complicated than 
the integers. 

But allowing F to have complex, or even real, values seems to go 
against the basic philosophy of a discrete space. Surely the assumption of 
complex values amounts, indirectly, to the assumption of Euclidean space, 
with all of  the complicated axioms and assumptions that that brings with 
it. This is just what we want to get away from! 

What alternatives are there ? Perhaps the following idea might be worthy 
of investigation. Begin by considering that the electron and the other 
"normal"  long-lived massive particles obey Fermi statistics. How does this 
come about? Consider an experiment involving two electrons el and e2 
going from a point P to a point Q, where P, Q e R 4. The electrons are to 
be considered as paths in R 4, or in our framework as discrete paths. Now 
the fact that electrons are fermions means that if el and e2 are indistinguish- 
able (the same spin, etc.), then the probability of the experiment is small, 
at least in comparison with the case that the electrons are distinguishable. 

How can we explain this in terms of the sizes of the clusters associated 
with the experiment? In the case of distinguishable particles, there is nothing 
new. However, if the particles are indistinguishable, then there is a new 
effect to consider. Imagine that el and e2 approach each other closely at 
two points (say the points P and Q above). Between P and Q, el and e2 
follow different path segments. But then one could imagine another possible 
universe in which e~ follows e2's segment between P and Q, and vice versa. 
In the case of continuous paths, these two different universes are really 
different, but not when the paths are discrete. Here we would just have two 
rows of elements of a single discrete, partially ordered set, and we have the 
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choice of  assigning the elements to the rows in a number of  different ways. 
But, according to the definition of probability given in Section 5, this is a 
single universe, and so the probability for the experiment would be small, 
as the Pauli exclusion principle suggests it should be. 

These thoughts should undoubtedly be associated more with "specula- 
tions" than "problems," since it seems unlikely that they would lead to any 
sensible mathematical results. Nevertheless, it is clear that if one is willing 
to accept the idea that quantum mechanical statistics can be explained 
according to the ideas in Section 5, then the strange recipes for combining 
the "probability amplitudes" for fermions and Bosons must also be 
explained in these terms. 
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